|
|
A264960
|
|
Half-convolution of the central binomial coefficients A000984 with itself.
|
|
3
|
|
|
1, 2, 10, 32, 146, 512, 2248, 8192, 35218, 131072, 556040, 2097152, 8815496, 33554432, 140107040, 536870912, 2230302098, 8589934592, 35541690568, 137438953472, 566823203656, 2199023255552, 9044910175520, 35184372088832, 144393718191496
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The half-convolution of a sequence {s(n)}n>=0 with itself is defined by r(n) := sum_{k = 0..floor(n/2)} s(k)*s(n-k). See A201204.
|
|
LINKS
|
Muniru A Asiru, Table of n, a(n) for n = 0..1520
|
|
FORMULA
|
a(n) = Sum_{k = 0..floor(n/2)} binomial(2*k,k)*binomial(2*n - 2*k, n - k).
a(2*n + 1) = 2^(4*n + 1) = A013776(n).
a(2*n) = 1/2*(binomial(2*n,n)^2 + 16^n) = A112830(2*n,n).
O.g.f.: 1/2*( 2/Pi*EllipticK(4*x)) + 1/(1 - 4*x) ).
E.g.f.: 1/2*( cosh(4*x) + sinh(4*x) + (BesselI(0,2*x))^2 ).
|
|
MAPLE
|
A264960:= n-> add(binomial(2*k, k)*binomial(2*n - 2*k, n - k), k = 0..floor(n/2)):
seq(A264960(n), n = 0..24);
|
|
MATHEMATICA
|
a[n_] := Sum[Binomial[2k, k]*Binomial[2n - 2k, n - k], {k, 0, Floor[n/2]}]; Array[a, 30, 0] (* Amiram Eldar, Nov 25 2018 *)
|
|
PROG
|
(PARI) a(n) = sum(k = 0, n\2, binomial(2*k, k)*binomial(2*n - 2*k, n - k)); \\ Michel Marcus, Nov 30 2015
(GAP) List([0..24], n->Sum([0..Int(n/2)], k->Binomial(2*k, k)*Binomial(2*n-2*k, n-k))); # Muniru A Asiru, Nov 25 2018
(MAGMA) [(&+[Binomial(2*k, k)*Binomial(2*n-2*k, n-k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Nov 26 2018
(Sage) [sum(binomial(2*k, k)*binomial(2*n-2*k, n-k) for k in (0..floor(n/2))) for n in range(30)] # G. C. Greubel, Nov 26 2018
|
|
CROSSREFS
|
Cf. A002894, A013776, A112830.
Sequence in context: A083099 A032095 A328039 * A151019 A329427 A004028
Adjacent sequences: A264957 A264958 A264959 * A264961 A264962 A264963
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Peter Bala, Nov 29 2015
|
|
STATUS
|
approved
|
|
|
|