login
A264936
Decimal expansion of the positive root of x^(x^x) = gamma.
1
4, 5, 5, 5, 5, 7, 0, 3, 6, 7, 0, 1, 9, 5, 8, 4, 2, 9, 0, 0, 4, 9, 5, 0, 0, 0, 4, 7, 0, 4, 0, 7, 0, 5, 7, 7, 0, 4, 9, 0, 3, 9, 3, 3, 9, 6, 9, 1, 2, 1, 7, 1, 7, 0, 6, 0, 7, 3, 0, 2, 3, 6, 0, 9, 6, 7, 6, 4, 2, 5, 3, 0, 9, 7, 2, 2, 4, 7, 6, 2, 2, 4, 4, 8, 9, 0, 0, 2, 5, 0, 1, 4, 0, 1, 0, 5, 0, 7, 7, 6, 8, 5, 3, 7, 8, 6
OFFSET
0,1
EXAMPLE
0.4555570367019584290049500047040705770490...
MATHEMATICA
Take[RealDigits[x /. FindRoot[x^x^x == EulerGamma, {x, 1}, WorkingPrecision -> 120]][[1]], 100] (* G. C. Greubel, Sep 07 2018 *)
PROG
(PARI) default(realprecision, 2000); solve(x=0.4, 0.5, x^(x^x)-Euler)
CROSSREFS
Cf. A001620.
Sequence in context: A349990 A117768 A018245 * A103671 A144192 A029909
KEYWORD
nonn,cons
AUTHOR
Anders Hellström, Nov 28 2015
EXTENSIONS
More digits from Jon E. Schoenfield, Mar 15 2018
STATUS
approved