This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264927 Terms satisfy: a(2*n) = b(n)^2 and a(2*n+1) = b(n)*b(n+1) for n>=0 with a(0)=1, where A(x)^2 = Sum_{n>=0} b(n)*x^n and g.f. A(x) = Sum_{n>=0} a(n)*x^n. 1
 1, 1, 4, 18, 81, 396, 1936, 9416, 45796, 234972, 1205604, 6188328, 31764496, 162249168, 828748944, 4224034452, 21529399441, 113085801048, 593996986944, 3126735424128, 16458794619136, 86717178000000, 456890625000000, 2407551579000000, 12686416153856064, 66648950832253248, 350144800010358336, 1838080630013808960, 9648980656951105600, 50559912359694495680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS What is the limit a(n)^(1/n) = ?  The limit is at least 5.3... LINKS EXAMPLE G.f.: A(x) = 1 + x + 4*x^2 + 18*x^3 + 81*x^4 + 396*x^5 + 1936*x^6 + 9416*x^7 + 45796*x^8 + 234972*x^9 + 1205604*x^10 +... where A(x)^2 = 1 + 2*x + 9*x^2 + 44*x^3 + 214*x^4 + 1098*x^5 + 5636*x^6 + 28788*x^7 + 146729*x^8 + 770712*x^9 + 4056944*x^10 + 21375000*x^11 + 112633992*x^12 + 591730344*x^13 + 3106280840*x^14 + 16276671352*x^15 + 85215198522*x^16 +... Illustration of initial terms, both a(n) of A(x) and b(n) of A(x)^2: a(0) = 1; b(0) = 1; a(1) = 1; b(1) = 2 = 1*1 + 1*1; a(2) = b(1)*b(1) = 4; b(2) = 9 = 1*4 + 1*1 + 4*1; a(3) = b(1)*b(2) = 18; b(3) = 44 = 1*18 + 1*4 + 4*1 + 18*1; a(4) = b(2)*b(2) = 81; b(4) = 214 = 1*81 + 1*18 + 4*4 + 18*1 + 81*1; a(5) = b(2)*b(3) = 396; b(5) = 1098; a(6) = b(3)*b(3) = 1936; b(6) = 5636; a(7) = b(3)*b(4) = 9416; b(7) = 28788; a(8) = b(4)*b(4) = 45796; b(8) = 146729; ... PROG (PARI) {a(n) = my(A=1+x); for(k=2, n, B = A^2; A = A + polcoeff(B, k\2) * polcoeff(B, (k+1)\2) * x^k +x*O(x^n) ); polcoeff(A, n)} for(n=0, 40, print1(a(n), ", ")) (PARI) {a(n) = my(A=[1, 1]); for(k=2, n, B = Vec(Ser(A)^2); A = concat(A, B[k\2+1]*B[(k+1)\2+1]) ); A[n+1]} for(n=0, 40, print1(a(n), ", ")) (PARI) /* Generates N terms rather quickly: */ N=500; A=[1, 1]; for(k=2, N, B = Vec(Ser(A)^2); A = concat(A, B[k\2+1]*B[(k+1)\2+1]) ); A CROSSREFS Cf. A257889. Sequence in context: A264191 A257060 A181610 * A257059 A194460 A100192 Adjacent sequences:  A264924 A264925 A264926 * A264928 A264929 A264930 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 13 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 12:04 EST 2019. Contains 329979 sequences. (Running on oeis4.)