login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A264924 G.f.: 1 / Product_{n>=0} (1 - x^(n+4))^((n+1)*(n+2)*(n+3)/3!). 4
1, 0, 0, 0, 1, 4, 10, 20, 36, 60, 104, 180, 336, 620, 1174, 2160, 3961, 7100, 12690, 22424, 39651, 69820, 122970, 215904, 378470, 660872, 1150740, 1996200, 3452685, 5952916, 10237576, 17559460, 30049285, 51301020, 87390872, 148534232, 251916041, 426329040, 720003646, 1213481344, 2041155052, 3426721080 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Number of partitions of n objects of 4 colors, where each part must contain at least one of each color. [Conjecture - see comment by Franklin T. Adams-Watters in A052847].

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..5000

FORMULA

G.f.: exp( Sum_{n>=1} ( x^n/(1-x^n) )^4 /n ).

G.f.: exp( Sum_{n>=1} L(n) * x^n/n ), where L(n) = Sum_{d|n} d*(d-1)*(d-2)*(d-3)/3!.

a(n) ~ Zeta(5)^(109/3600) / (2^(791/1800) * n^(1909/3600) * sqrt(5*Pi)) * exp(11*Zeta'(-1)/6 + log(2*Pi)/2 + Zeta(3)/(4*Pi^2) - Pi^16/(194400000 * Zeta(5)^3) + 11*Pi^8 * Zeta(3)/(108000 * Zeta(5)^2) - Pi^6/(1800*Zeta(5)) - 121*Zeta(3)^2/(360*Zeta(5)) + Zeta'(-3)/6 + (-Pi^12/(1350000 * 2^(2/5) * Zeta(5)^(11/5)) + 11*Pi^4 * Zeta(3)/(900 * 2^(2/5) * Zeta(5)^(6/5)) - Pi^2/(3*2^(7/5) * Zeta(5)^(1/5))) * n^(1/5) + (-Pi^8/(9000 * 2^(4/5) * Zeta(5)^(7/5)) + 11*Zeta(3)/(3*2^(9/5) * Zeta(5)^(2/5))) * n^(2/5) - Pi^4/(90 * 2^(1/5) * Zeta(5)^(3/5)) * n^(3/5) + 5*Zeta(5)^(1/5) / 2^(8/5) * n^(4/5)). - Vaclav Kotesovec, Dec 09 2015

EXAMPLE

G.f.: A(x) = 1 + x^4 + 4*x^5 + 10*x^6 + 20*x^7 + 36*x^8 + 60*x^9 + 104*x^10 + 180*x^11 +...

where

1/A(x) = (1-x^4) * (1-x^5)^4 * (1-x^6)^10 * (1-x^7)^20 * (1-x^8)^35 * (1-x^9)^56 * (1-x^10)^84 * (1-x^11)^120 * (1-x^12)^165 *...

Also,

log(A(x)) = (x/(1-x))^4 + (x^2/(1-x^2))^4/2 + (x^3/(1-x^3))^4/3 + (x^4/(1-x^4))^4/4 + (x^5/(1-x^5))^4/5 + (x^6/(1-x^6))^4/6 +...

MATHEMATICA

nmax = 50; CoefficientList[Series[Product[1/(1-x^k)^((k-3)*(k-2)*(k-1)/6), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 09 2015 *)

PROG

(PARI) {a(n) = my(A=1); A = prod(k=0, n, 1/(1 - x^(k+4) +x*O(x^n) )^((k+1)*(k+2)*(k+3)/3!) ); polcoeff(A, n)}

for(n=0, 50, print1(a(n), ", "))

(PARI) {a(n) = my(A=1); A = exp( sum(k=1, n+1, (x^k/(1 - x^k))^4 /k +x*O(x^n) ) ); polcoeff(A, n)}

for(n=0, 50, print1(a(n), ", "))

(PARI) {L(n) = sumdiv(n, d, d*(d-1)*(d-2)*(d-3)/3! )}

{a(n) = my(A=1); A = exp( sum(k=1, n+1, L(k) * x^k/k +x*O(x^n) ) ); polcoeff(A, n)}

for(n=0, 50, print1(a(n), ", "))

CROSSREFS

Cf. A052847, A264923, A264925, A264926.

Cf. A000335, A255050, A258352.

Sequence in context: A301177 A009847 A140226 * A008059 A145132 A063758

Adjacent sequences:  A264921 A264922 A264923 * A264925 A264926 A264927

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 28 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 13:13 EDT 2019. Contains 323514 sequences. (Running on oeis4.)