login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A264922 Decimal expansion of constant z = Sum_{n>=1} {2^n/n} * n/2^n, where {x} is the fractional part of x. 4

%I

%S 4,1,2,9,2,0,7,6,8,6,7,1,4,9,7,6,9,2,3,1,8,7,6,4,4,6,3,3,9,1,6,6,0,2,

%T 2,3,2,6,6,3,6,5,8,0,8,5,5,9,1,6,1,5,0,1,7,1,2,0,8,7,3,8,0,9,6,5,2,9,

%U 3,3,4,5,5,2,2,8,4,2,3,7,1,0,8,3,2,2,4,0,6,8,1,1,8,9,3,7,5,4,2,6,7,0,9,4,4,0,9,6,8,1,5,9,1,8,6,8,4,5,2,3,9,0,6,7,6,7,3,7,4,3,9,4,7,7,8,7,6,7,4,4,6,5,5,6,7,1,1,4,7,6,1,0,7,8,0,4,6,5,5,3,2,9

%N Decimal expansion of constant z = Sum_{n>=1} {2^n/n} * n/2^n, where {x} is the fractional part of x.

%F z = Sum_{n>=1} (2^n mod n) / 2^n = Sum_{n>=1} A015910(n) / 2^n.

%e z = 0.41292076867149769231876446339166022326636580855916\

%e 15017120873809652933455228423710832240681189375426\

%e 70944096815918684523906767374394778767446556711476\

%e 10780465532930416417809262367754600548943347721936\

%e 55335089998952017672435611201014919700656911176350\

%e 62372182725523627777491225313970963752168821911399\

%e 67310841379582079241875027376200157722800032983503\

%e 52300500273468914504274753388182612540758874330051\

%e 88409791519634550380640194311077029592977832839103\

%e 92762052659306868595889500273010680885518723259637...

%e INFINITE SERIES.

%e z = 0/2 + 0/2^2 + 2/2^3 + 0/2^4 + 2/2^5 + 4/2^6 + 2/2^7 + 0/2^8 + 8/2^9 + 4/2^10 + 2/2^11 + 4/2^12 + 2/2^13 + 4/2^14 + 8/2^15 + 0/2^16 + 2/2^17 + 10/2^18 + 2/2^19 + 16/2^20 + 8/2^21 + 4/2^22 + 2/2^23 + 16/2^24 + 7/2^25 + 4/2^26 + 26/2^27 + 16/2^28 + 2/2^29 + 4/2^30 + 2/2^31 + 0/2^32 + 8/2^33 +...+ A015910(n)/2^n +...

%Y Cf. A015910 (2^n mod n), A264918, A264919, A264920, A264921.

%K nonn,cons

%O 0,1

%A _Paul D. Hanna_, Dec 03 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 01:18 EDT 2019. Contains 323429 sequences. (Running on oeis4.)