OFFSET
0,1
FORMULA
z = Sum_{n>=1} (2^n mod n) / 2^n = Sum_{n>=1} A015910(n) / 2^n.
EXAMPLE
z = 0.41292076867149769231876446339166022326636580855916\
15017120873809652933455228423710832240681189375426\
70944096815918684523906767374394778767446556711476\
10780465532930416417809262367754600548943347721936\
55335089998952017672435611201014919700656911176350\
62372182725523627777491225313970963752168821911399\
67310841379582079241875027376200157722800032983503\
52300500273468914504274753388182612540758874330051\
88409791519634550380640194311077029592977832839103\
92762052659306868595889500273010680885518723259637...
INFINITE SERIES.
z = 0/2 + 0/2^2 + 2/2^3 + 0/2^4 + 2/2^5 + 4/2^6 + 2/2^7 + 0/2^8 + 8/2^9 + 4/2^10 + 2/2^11 + 4/2^12 + 2/2^13 + 4/2^14 + 8/2^15 + 0/2^16 + 2/2^17 + 10/2^18 + 2/2^19 + 16/2^20 + 8/2^21 + 4/2^22 + 2/2^23 + 16/2^24 + 7/2^25 + 4/2^26 + 26/2^27 + 16/2^28 + 2/2^29 + 4/2^30 + 2/2^31 + 0/2^32 + 8/2^33 +...+ A015910(n)/2^n +...
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Paul D. Hanna, Dec 03 2015
STATUS
approved