login
A264911
Number of 6-ascent sequences of length n with no consecutive repeated letters.
2
1, 1, 6, 42, 315, 2541, 21931, 201761, 1971627, 20401115, 222886237, 2564378397, 30996823039, 392772620555, 5206946927601, 72084153595073, 1040323636265431, 15627180533214417, 243970019981427565, 3953119943277152705, 66394925299770846495, 1154518082416143179150
OFFSET
0,3
LINKS
S. Kitaev, J. Remmel, p-Ascent Sequences, arXiv:1503.00914 [math.CO], 2015.
MAPLE
b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
`if`(j=i, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+6))
end:
a:= n-> (b(n-1, 0$2)):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Sum[If[j == i, 0, b[n - 1, j, t + If[j > i, 1, 0]]], {j, 0, t + 6}]]; a[n_] := b[n - 1, 0, 0];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 09 2017, after Alois P. Heinz *)
CROSSREFS
Column k=6 of A264909.
Sequence in context: A162968 A247638 A034171 * A244902 A153293 A145301
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 28 2015
STATUS
approved