OFFSET
0,13
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
S. Kitaev, J. Remmel, p-Ascent Sequences, arXiv:1503.00914 [math.CO], 2015.
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 2, 6, 12, 20, 30, 42, 56, ...
0, 5, 21, 54, 110, 195, 315, 476, ...
0, 16, 87, 276, 670, 1380, 2541, 4312, ...
0, 61, 413, 1574, 4470, 10555, 21931, 41468, ...
0, 271, 2213, 9916, 32440, 86815, 201761, 422128, ...
MAPLE
b:= proc(n, k, i, t) option remember; `if`(n<1, 1, add(
`if`(j=i, 0, b(n-1, k, j, t+`if`(j>i, 1, 0))), j=0..t+k))
end:
A:= (n, k)-> b(n-1, k, 0$2):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[n_, k_, i_, t_] := b[n, k, i, t] = If[n<1, 1, Sum[If[j == i, 0, b[n-1, k, j, t + If[j>i, 1, 0]]], {j, 0, t+k}]]; A[n_, k_] := b[n-1, k, 0, 0]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Nov 28 2015
STATUS
approved