login
Array read by antidiagonals: T(n,m) = (1+2^n)^m; n,m>=0.
2

%I #14 Dec 15 2015 06:42:24

%S 1,2,1,4,3,1,8,9,5,1,16,27,25,9,1,32,81,125,81,17,1,64,243,625,729,

%T 289,33,1,128,729,3125,6561,4913,1089,65,1,256,2187,15625,59049,83521,

%U 35937,4225,129,1,512,6561,78125,531441,1419857,1185921,274625,16641,257

%N Array read by antidiagonals: T(n,m) = (1+2^n)^m; n,m>=0.

%F G.f. for row n: 1/(1-(1+2^n)*x). - _R. J. Mathar_, Dec 15 2015

%e 1, 2, 4, 8, 16, 32,

%e 1, 3, 9, 27, 81, 243,

%e 1, 5, 25, 125, 625, 3125,

%e 1, 9, 81, 729, 6561, 59049,

%e 1, 17, 289, 4913, 83521, 1419857,

%e 1, 33, 1089, 35937, 1185921,39135393,

%t Reverse /@ Table[(1 + 2^(n - m))^m, {n, 0, 9}, {m, 0, n}] // Flatten (* _Michael De Vlieger_, Nov 27 2015 *)

%Y Cf. A000079 (row 0), A000244 (row 1), A000351 (row 2), A001019 (row 3), A001026 (row 4), A009977 (row 5), A000051 (column 1), A028400 (column 2), A136516 (main diagonal), A165327 (upper subdiagonal).

%K nonn,tabl,easy

%O 0,2

%A _R. J. Mathar_, Nov 27 2015