This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264854 a(n) = n*(n + 1)*(11*n^2 + 11*n - 10)/24. 3
 0, 1, 14, 61, 175, 400, 791, 1414, 2346, 3675, 5500, 7931, 11089, 15106, 20125, 26300, 33796, 42789, 53466, 66025, 80675, 97636, 117139, 139426, 164750, 193375, 225576, 261639, 301861, 346550, 396025, 450616, 510664, 576521, 648550, 727125, 812631, 905464, 1006031 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Partial sums of centered 11-gonal (or hendecagonal) pyramidal numbers. LINKS OEIS Wiki, Figurate numbers Eric Weisstein's World of Mathematics, Pyramidal Number Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA G.f.: x*(1 + 9*x + x^2)/(1 - x)^5. a(n) = Sum_{k = 0..n} A004467(k). a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Nov 27 2015 MATHEMATICA Table[n (n + 1) (11 n^2 + 11 n - 10)/24, {n, 0, 50}] PROG (MAGMA) [n*(n+1)*(11*n^2+11*n-10)/24: n in [0..50]]; // Vincenzo Librandi, Nov 27 2015 (PARI) a(n)=n*(n+1)*(11*n^2+11*n-10)/24 \\ Charles R Greathouse IV, Jul 26 2016 CROSSREFS Cf. A004467. Cf. similar sequences provided by the partial sums of centered k-gonal pyramidal numbers: A006522 (k=1), A006007 (k=2), A002817 (k=3), A006325 (k=4), A006322 (k=5), A000537 (k=6), A006323 (k=7), A006324 (k=8), A236770 (k=9), A264853 (k=10), this sequence (k=11), A062392 (k=12), A264888 (k=13). Sequence in context: A051799 A164540 A140184 * A189948 A252255 A025415 Adjacent sequences:  A264851 A264852 A264853 * A264855 A264856 A264857 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Nov 26 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 21:36 EST 2019. Contains 319336 sequences. (Running on oeis4.)