OFFSET
1,1
COMMENTS
The corresponding addition chain lengths are given in A253723.
The quotient A003313(k)/log_2(k) has its conjectured maximum of 1.46347481 for k=71. Values of A003313 up to 2^31-1 are obtained from Achim Flammenkamp's web page, which provides a table computed by Neill M. Clift.
In the paper by Wattel & Jensen, the conjectured maximum is proved to hold for all k > 71, too. - Achim Flammenkamp, Nov 01 2016
REFERENCES
E. Wattel, G. A. Jensen, Efficient calculation of powers in a semigroup, 1968 in Zuivere Wiskunde 1/68. [From Achim Flammenkamp, Nov 01 2016]
LINKS
Achim Flammenkamp, Shortest addition chains
EXAMPLE
a(3) = 11, because the maximum of quotients of shortest addition chain length l(k) and the base-2 logarithm of the numbers in the range 2^3 ... 2^4 occurs at k=11.
k l(k) log_2(k) l(k)/log_2(k)
8 3 3.0000 1.00000
9 4 3.1699 1.26186
10 4 3.3219 1.20412
11 5 3.4594 1.44532
12 4 3.5849 1.11577
13 5 3.7004 1.35119
14 5 3.8074 1.31325
15 5 3.9069 1.27979
16 4 4.0000 1.00000
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Hugo Pfoertner, Dec 17 2015
STATUS
approved