This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264776 a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is pentagonal: (3n^2 - n)/2. 6
 1, 2, 47, 160, 6070026, 47418729166667, 4741872916666741666666666667, 47418729166667416666666666674166666666666666666666666667 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS It appears that a(n) = ceiling((a(n-1) + 5/12)*10^(7*2^(n-6))) for n>=7. - Jon E. Schoenfield, Nov 24 2015 LINKS Wikipedia, Pentagonal number EXAMPLE 1, 12, 1247, 1247160, 12471606070026 are pentagonal. PROG (PARI) ispentagonal(n)=ispolygonal(n, 5) first(m)=my(v=vector(m), s=""); s="1"; v[1]=1; for(i=2, m, n=1; while(!ispentagonal(eval(concat(s, Str(n)))), n++); v[i]=n; s=concat(s, Str(n))); v CROSSREFS Cf. A000326, A264738. Sequence in context: A069548 A065044 A142313 * A153213 A304725 A128822 Adjacent sequences:  A264773 A264774 A264775 * A264777 A264778 A264779 KEYWORD nonn,base,more AUTHOR Anders HellstrÃ¶m, Nov 24 2015 EXTENSIONS a(6)-a(8) from Jon E. Schoenfield, Nov 24 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 09:27 EDT 2019. Contains 324234 sequences. (Running on oeis4.)