login
A264272
T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having index change +-(.,.) 0,0 1,0 or 1,2.
14
4, 10, 9, 25, 48, 25, 65, 256, 305, 64, 169, 1280, 3721, 1800, 169, 442, 6400, 40626, 50625, 10933, 441, 1156, 32000, 443556, 1143000, 707281, 65856, 1156, 3026, 160000, 4861800, 25806400, 33729146, 9834496, 397970, 3025, 7921, 800000, 53290000
OFFSET
1,1
COMMENTS
Table starts
....4......10.........25...........65.............169................442
....9......48........256.........1280............6400..............32000
...25.....305.......3721........40626..........443556............4861800
...64....1800......50625......1143000........25806400..........600090240
..169...10933.....707281.....33729146......1608491236........80568542340
..441...65856....9834496....981994496.....98054154496.....10563801093680
.1156..397970..137007025..28735927165...6027088830169...1398071103483637
.3025.2402455.1908029761.839596650695.369450492999025.184549492112860840
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3)
k=2: [order 8]
k=3: a(n) = 14*a(n-1) +14*a(n-2) -210*a(n-3) +210*a(n-5) -14*a(n-6) -14*a(n-7) +a(n-8)
k=4: [order 52]
k=5: [order 96]
Empirical for row n:
n=1: a(n) = 3*a(n-1) -3*a(n-3) +a(n-4)
n=2: a(n) = 5*a(n-1) for n>3
n=3: [order 22]
n=4: [order 25] for n>27
EXAMPLE
Some solutions for n=3 k=4
..5..8..7..3..4....5..1..9..3..4....0..8..2..3..4....0..8..2..3..9
..0..6..2..1.14....0.11..2..8.14....5.13.14..1..9....5..1.12.13..4
.10.18.19.13..9...10.18..7..6.19...15.16.12..6..7...15.16..7..6.19
.15.16.17.11.12...15.16.17.13.12...10.11.17.18.19...10.11.17.18.14
CROSSREFS
Column 1 is A007598(n+2).
Row 1 is A166516(n+2).
Sequence in context: A199805 A053248 A081547 * A264257 A111072 A189895
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 10 2015
STATUS
approved