%I #7 Nov 17 2015 13:26:05
%S 1,12,150,1944,25977,355932,4975974,70684920,1016911392,14778827136,
%T 216547264296,3194332332192,47384274750705,706221689838300,
%U 10568432343600990,158713925474269080,2390963478663939555,36119150645827725540,547001314170524048970,8302813348383238118760,126288497159001902128185,1924561894757711270308380
%N G.f. satisfies: A(x)^2 = A( x^2/(1-12*x)^2 ).
%C Radius of convergence is r = 1/16 where r = r^2/(1-12*r)^2 with A(r) = 1.
%C Compare to: C(x)^2 = C( x^2/(1-2*x)^2 ) where C(x) = (1-2*x-sqrt(1-4*x))/(2*x) is a g.f. of the Catalan numbers A000108.
%F G.f. satisfies:
%F (1) A(x) = -A( -x/(1-24*x) ).
%F (2) A(x^2) = A( x/(1+12*x) )^2 = A( -x/(1-12*x) )^2.
%F (3) A( x/(1+6*x)^2 ) = -A( -x/(1-6*x)^2 ), an odd function.
%F (4) A( x/(1+6*x)^2 )^2 = A( x^2/(1+36*x^2)^2 ), an even function.
%F (5) A( x/(1+9*x) ) = G(x) = Sum(n>=1} A264225(n)*x^n where G(x)^2 = G( x^2/(1-6*x) ).
%F (6) A( x/(1+15*x) ) = -G(-x) = Sum(n>=1} (-1)^(n-1) * A264225(n)*x^n where G(x)^2 = G( x^2/(1-6*x) ).
%F Sum_{k=0..n} binomial(n,k) *(-12)^(n-k) * a(k+1) = 0 for odd n.
%F Sum_{k=0..n} binomial(n,k) * (-9)^(n-k) * a(k+1) = A264225(n+1) for n>=0.
%F Sum_{k=0..n} binomial(n,k) *(-15)^(n-k) * a(k+1) = (-1)^n * A264225(n+1) for n>=0.
%e G.f.: A(x) = x + 12*x^2 + 150*x^3 + 1944*x^4 + 25977*x^5 + 355932*x^6 + 4975974*x^7 + 70684920*x^8 + 1016911392*x^9 + 14778827136*x^10 + 216547264296*x^11 +...
%e where A( x^2/(1-12*x)^2 ) = A(x)^2,
%e A( x^2/(1-12*x)^2 ) = x^2 + 24*x^3 + 444*x^4 + 7488*x^5 + 121110*x^6 + 1918512*x^7 + 30066552*x^8 + 468571392*x^9 + 7281721209*x^10 + 113007681720*x^11 +...
%e Also, A( x/(1+12*x) ) = A(x^2)^(1/2),
%e A( x/(1+12*x) ) = x + 6*x^3 + 57*x^5 + 630*x^7 + 7584*x^9 + 96552*x^11 + 1277937*x^13 + 17393454*x^15 + 241666275*x^17 + 3410638362*x^19 + 48723929721*x^21 +...
%e Let B(x) = x/Series_Reversion( A(x) ), so that A(x) = x*B(A(x)), then
%e B(x) = 1 + 12*x + 6*x^2 - 15*x^4 + 90*x^6 - 660*x^8 + 5310*x^10 - 45765*x^12 + 413640*x^14 - 3864345*x^16 + 37014120*x^18 - 361577790*x^20 +...+ A264413(n)*x^(2*n) +...
%e such that B(x) = F(x^2) + 12*x = F(x)^2 where F(x) is the g.f. of A264413.
%o (PARI) {a(n) = my(A=x); for(i=1,#binary(n+1), A = sqrt( subst(A,x, x^2/(1-12*x +x*O(x^n))^2) ) ); polcoeff(A,n)}
%o for(n=1,30,print1(a(n),", "))
%Y Cf. A264413, A264225, A264232.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Nov 17 2015