This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264200 Numerator of sum of numbers in set g(n) generated as in Comments 1
 0, 1, 5, 19, 69, 235, 789, 2603, 8533, 27819, 90453, 293547, 951637, 3082923, 9983317, 32320171, 104617301, 338602667, 1095849301, 3546458795, 11477013845, 37141260971, 120193373525, 388957383339, 1258699445589, 4073250794155, 13181344109909, 42655780874923 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Starting with g(0) = {0}, generate g(n) for n > 0 inductively using these rules: (1)  if x is in g(n-1), then x + 1 is in g(n); and (2)  if x is in g(n-1) and x < 2, then x/2 is in g(n). The sum of numbers in g(n) is a(n)/2^(n-1). LINKS FORMULA Conjecture: a(n) = 3*a(n-1) + 4*a(n-2) - 8*a(n-3) - 8*a(n-4). EXAMPLE g(0) = {0}, sum = 0. g(1) = {1}, sum = 1. g(2) = {1/2,2/1}, sum = 5/4. g(3) = {1/4,3/2,3/1}, sum = 19/8. MATHEMATICA z = 30; x = 1/2; g[0] = {0}; g[1] = {1}; g[n_] := g[n] = Union[1 + g[n - 1], (1/2) Select[g[n - 1], # < 2 &]] Table[g[n], {n, 0, z}]; Table[Total[g[n]], {n, 0, z}] Numerator[Table[Total[g[n]], {n, 0, z}] ] CROSSREFS Cf. A054123, A054124, A264201. Sequence in context: A143954 A047145 A240525 * A055991 A030662 A149758 Adjacent sequences:  A264197 A264198 A264199 * A264201 A264202 A264203 KEYWORD nonn,easy AUTHOR Clark Kimberling, Nov 09 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 19:11 EDT 2019. Contains 324222 sequences. (Running on oeis4.)