OFFSET
0,5
COMMENTS
a(n) is prime for n = 4, 7, 8, 26, 28, 52, 86, 87, 93, 97, 158, 196, 303, 2908, 3412, 4111, 4208, 6183, 6337, 9878, ...
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
FORMULA
G.f.: x*(-1 + 3*x)/(1 - x - x^2)^2.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4).
a(n) = n*F(n-1) - F(n).
a(n) = Sum_{i=0..n} F(i)*L(n-1-i), where L() is a Lucas number (A000032).
a(n) = -(-1)^n*A178521(-n).
a(n+2) - a(n) = A007502(n+1).
Sum_{i>0} 1/a(i) = 1.39516607051636028893879220294180374...
a(n) = (-((1+sqrt(5))/2)^n*(2*sqrt(5) + (-5+sqrt(5))*n) + ((1-sqrt(5))/2)^n*(2*sqrt(5) + (5+sqrt(5))*n)) / 10. - Colin Barker, Jul 27 2017
a(n) = (-i)^n*(n*sin(c*(n+1)) - (n+1)*sin(c*n)*i)/sqrt(5/4) where c = arccos(i/2). - Peter Luschny, May 16 2022
MAPLE
A264147 := proc(n)
n*combinat[fibonacci](n+1)-(n+1)*combinat[fibonacci](n) ;
end proc:
seq(A264147(n), n=0..10) ; # R. J. Mathar, Jun 02 2022
MATHEMATICA
Table[n Fibonacci[n + 1] - (n + 1) Fibonacci[n], {n, 0, 40}]
PROG
(PARI) for(n=0, 40, print1(n*fibonacci(n+1)-(n+1)*fibonacci(n)", "));
(Sage) [n*fibonacci(n+1)-(n+1)*fibonacci(n) for n in (0..40)]
(Maxima) makelist(n*fib(n+1)-(n+1)*fib(n), n, 0, 40);
(Magma) [n*Fibonacci(n+1)-(n+1)*Fibonacci(n): n in [0..40]];
(PARI) concat(0, Vec(-x*(1 - 3*x) / (1 - x - x^2)^2 + O(x^50))) \\ Colin Barker, Jul 27 2017
(Julia) # The function 'fibrec' is defined in A354044.
function A264147(n)
n == 0 && return BigInt(0)
a, b = fibrec(n)
n*b - a*(n + 1)
end # Peter Luschny, May 16 2022
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Bruno Berselli, Nov 04 2015
STATUS
approved