login
A264081
The sum of the 2 X 2 idempotent matrices over Z/nZ is congruent to {{a(n),0}, {0,a(n)}} (mod n).
0
0, 0, 1, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 8, 14, 1, 1, 8, 1, 16, 7, 8, 1, 14, 1, 8, 1, 26, 1, 22, 1, 1, 14, 8, 18, 26, 1, 8, 1, 8, 1, 14, 1, 26, 5, 8, 1
OFFSET
1,6
EXAMPLE
The 2 X 2 idempotent matrices over Z/3Z are {{0, 0}, {0, 0}}, {{0, 0}, {0,1}}, {{0, 0}, {1, 1}}, {{0, 0}, {2, 1}}, {{0, 1}, {0, 1}}, {{0, 2}, {0, 1}}, {{1, 0}, {0, 0}}, {{1, 0}, {0, 1}}, {{1, 0}, {1, 0}}, {{1, 0}, {2, 0}}, {{1, 1}, {0, 0}}, {{1, 2}, {0, 0}}, {{2, 1}, {1, 2}}, {{2, 2}, {2, 2}}. Their sum is {{10, 9}, {9, 10}} == 1*{{1, 0}, {0, 1}} (mod 3) and therefore a(3) = 1.
MATHEMATICA
K[n_] := K[n] = Mod[Sum[If[ Mod[{{a, b}, {c, d}}.{{a, b}, {c, d}} - {{a, b}, {c, d}}, n] == 0{{a, b}, {c, d}}, {{a, b}, {c, d}}, 0], {a, n}, {b, n}, {c, n}, {d, n}], n]; Table[K[n][[1, 1]], {n, 1, 22}]
PROG
(PARI) a(n) = lift(sum(i=0, n-1, sum(j=0, n-1, sum(k=0, n-1, sum(l=0, n-1, m = Mod([i, j; k, l], n); if ((m^2 == m), m[1, 1])))))); \\ Michel Marcus, Apr 04 2016
CROSSREFS
Cf. A226756.
Sequence in context: A171660 A157117 A322143 * A061538 A123602 A208896
KEYWORD
nonn,more
AUTHOR
STATUS
approved