

A264027


Triangle read by rows: T(n, k) = Sum_{t=k..n2} (1)^(tk)*(nt)!*binomial(t,k)*binomial(n2,t).


0



2, 4, 2, 14, 8, 2, 64, 42, 12, 2, 362, 256, 84, 16, 2, 2428, 1810, 640, 140, 20, 2, 18806, 14568, 5430, 1280, 210, 24, 2, 165016, 131642, 50988, 12670, 2240, 294, 28, 2, 1616786, 1320128, 526568, 135968, 25340, 3584, 392, 32, 2, 17487988, 14551074, 5940576, 1579704, 305928, 45612, 5376, 504, 36, 2
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


LINKS

Table of n, a(n) for n=2..56.
J. Liese, J. Remmel, Qanalogues of the number of permutations with kexcedances, PU. M. A. Vol. 21 (2010), No. 2, pp. 285320 (see E_{n,2}(x) in Table 1 p. 291).


EXAMPLE

Triangle begins:
2;
4, 2;
14, 8, 2;
64, 42, 12, 2;
362, 256, 84, 16, 2;
...


MATHEMATICA

Table[Sum[(1)^(t  k) (n  t)!*Binomial[t, k] Binomial[n  2, t], {t, k, n  2}], {n, 2, 11}, {k, 0, n  2}] // Flatten (* Michael De Vlieger, Nov 01 2015 *)


PROG

(PARI) tabl(nn) = {for (n=2, nn, for (k=0, n2, print1(sum(t=k, n2, (1)^(tk)*(nt)!*binomial(t, k)*binomial(n2, t)), ", "); ); print(); ); }


CROSSREFS

Cf. A008290, A123513.
Sequence in context: A152666 A153801 A062867 * A113539 A215055 A152877
Adjacent sequences: A264024 A264025 A264026 * A264028 A264029 A264030


KEYWORD

nonn,tabl


AUTHOR

Michel Marcus, Nov 01 2015


STATUS

approved



