login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A264027 Triangle read by rows: T(n, k) = Sum_{t=k..n-2} (-1)^(t-k)*(n-t)!*binomial(t,k)*binomial(n-2,t). 0
2, 4, 2, 14, 8, 2, 64, 42, 12, 2, 362, 256, 84, 16, 2, 2428, 1810, 640, 140, 20, 2, 18806, 14568, 5430, 1280, 210, 24, 2, 165016, 131642, 50988, 12670, 2240, 294, 28, 2, 1616786, 1320128, 526568, 135968, 25340, 3584, 392, 32, 2, 17487988, 14551074, 5940576, 1579704, 305928, 45612, 5376, 504, 36, 2 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

2,1

LINKS

Table of n, a(n) for n=2..56.

J. Liese, J. Remmel, Q-analogues of the number of permutations with k-excedances, PU. M. A. Vol. 21 (2010), No. 2, pp. 285-320 (see E_{n,2}(x) in Table 1 p. 291).

EXAMPLE

Triangle begins:

2;

4, 2;

14, 8, 2;

64, 42, 12, 2;

362, 256, 84, 16, 2;

...

MATHEMATICA

Table[Sum[(-1)^(t - k) (n - t)!*Binomial[t, k] Binomial[n - 2, t], {t, k, n - 2}], {n, 2, 11}, {k, 0, n - 2}] // Flatten (* Michael De Vlieger, Nov 01 2015 *)

PROG

(PARI) tabl(nn) = {for (n=2, nn, for (k=0, n-2, print1(sum(t=k, n-2, (-1)^(t-k)*(n-t)!*binomial(t, k)*binomial(n-2, t)), ", "); ); print(); ); }

CROSSREFS

Cf. A008290, A123513.

Sequence in context: A152666 A153801 A062867 * A113539 A215055 A152877

Adjacent sequences:  A264024 A264025 A264026 * A264028 A264029 A264030

KEYWORD

nonn,tabl

AUTHOR

Michel Marcus, Nov 01 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 01:41 EST 2019. Contains 329978 sequences. (Running on oeis4.)