login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263980 Least prime of the form a^2 + b^2 with a > k and b > k, for some number k. 1
2, 13, 41, 61, 113, 181, 269, 313, 421, 613, 761, 929, 1013, 1201, 1301, 1637, 1741, 1861, 2113, 2381, 2521, 2969, 3121, 3449, 3613, 4153, 4337, 4513, 5101, 5737, 5953, 6173, 6389, 6857, 7321, 7817, 8069, 8581, 9397, 9661, 9941, 10513, 11717, 12329, 12641, 13613, 14281, 14621, 15313, 16381, 17117, 17489, 18253, 18637, 19013, 19801, 20201 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

List of distinct members of A263979.

The sequence is infinite; see Sierpinski (1988), p. 221.

REFERENCES

W. Sierpinski, Elementary Theory of Numbers, 2nd English edition, revised and enlarged by A. Schinzel, Elsevier, 1988.

LINKS

Table of n, a(n) for n=1..57.

FORMULA

a(n) == 1 or 2 mod 4.

EXAMPLE

The smallest prime of the form a^2 + b^2 with a > 2 and b > 2 is 41 = 4^2 + 5^2, so 41 is a member.

5 = 1^2 + 2^2 is a prime of the form a^2 + b^2 with a > 0 and b > 0, but 5 is not a member, because 2 = 1^2 + 1^2 is a smaller prime of that form.

MATHEMATICA

Union[Table[

  Min[Select[

    Union[

     Flatten[

      With[{n = k},

       Array[#1^2 + #2^2 &, { 2 n + 1, 2 n + 1}, {n + 1, n + 1}]]]],

    PrimeQ]], {k, 0, 99}]]

CROSSREFS

Cf. A002144, A002313, A263979.

Sequence in context: A263979 A042795 A179925 * A157185 A219054 A154354

Adjacent sequences:  A263977 A263978 A263979 * A263981 A263982 A263983

KEYWORD

nonn

AUTHOR

Jonathan Sondow, Nov 09 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 21:59 EST 2019. Contains 320200 sequences. (Running on oeis4.)