login
A263955
T(n,k)=Number of (n+2)X(k+2) arrays of permutations of 0..(n+2)*(k+2)-1 filled by rows with each element moved 0 or 1 knight moves, and rows and columns in increasing lexicographic order.
5
6, 40, 36, 118, 606, 158, 354, 5900, 8783, 614, 1209, 63788, 246718, 135933, 2596, 4334, 832934, 7955810, 11302184, 2222154, 11045, 14525, 9289071, 346346808, 1265538562, 567198796, 36482594, 47252, 46022, 99951445, 13232164013
OFFSET
1,1
COMMENTS
Table starts
.....6.......40.......118........354......1209........4334....14525.46022
....36......606......5900......63788....832934.....9289071.99951445
...158.....8783....246718....7955810.346346808.13232164013
...614...135933..11302184.1265538562
..2596..2222154.567198796
.11045.36482594
.47252
FORMULA
Empirical for row n:
n=1: [linear recurrence of order 79] for n>86
EXAMPLE
Some solutions for n=2 k=4
..0..1.10.11.15.16....0..1..2..3..4.16....0..1..6..7..8..9....0..1..2..3.15.16
..2.18.19..5.21..3....6.15.19..9.23.11....2.15.16.22.21..3....6..7.19.20.10.11
.12.13..6..7.20..4...12.13.14..7..5.21...12.13.14.23..5..4...12.13.14..4..5.17
.14..8..9.17.22.23...18..8.20.17.22.10...18.19.20.17.11.10...18..8..9.21.22.23
CROSSREFS
Sequence in context: A034661 A094654 A145001 * A108937 A045565 A334903
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 30 2015
STATUS
approved