The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263951 Square numbers in A070552. 6
 9, 25, 121, 361, 841, 3481, 3721, 5041, 6241, 10201, 17161, 19321, 32761, 39601, 73441, 121801, 143641, 167281, 201601, 212521, 271441, 323761, 326041, 398161, 410881, 436921, 546121, 564001, 674041, 776161, 863041, 982081, 1062961, 1079521, 1104601, 1142761, 1190281, 1274641, 1324801 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All terms are == 1 (mod 8). For n > 2, a(n) == 1 (mod 120). This sequence is a subsequence of A247687 and it contains the squares of all those primes p for which the areas of the 3 regions in the symmetric representation of p^2 (p once and (p^2 + 1)/2 twice), are primes; i.e., p^2 and p^2 + 1 are semiprimes (see A070552). The sequence of those primes p is A048161. Cf. A237593. - Hartmut F. W. Hoft, Aug 06 2020 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A048161(n)^2. From Hartmut F. W. Hoft, Aug 06 2020: (Start) a(n) = 2 * A067755(n) + 1, n >= 1. a(n+2) = 120 * A068485(n) + 1, n >= 1. (End) MATHEMATICA a263951[n_] := Select[Map[Prime[#]^2&, Range[n]], PrimeQ[(#+1)/2]&] a263951[190] (* Hartmut F. W. Hoft, Aug 06 2020 *) PROG (PARI) forprime(p=3, 2000, if(isprime((p^2+1)/2), print1(p^2, ", "))) \\ Altug Alkan, Oct 30 2015 CROSSREFS Subsequence of A070552. Cf. A048161, A067755, A068485, A237593, A247687, A263990. Sequence in context: A084058 A108570 A092769 * A139818 A227078 A146365 Adjacent sequences: A263948 A263949 A263950 * A263952 A263953 A263954 KEYWORD nonn AUTHOR Zak Seidov, Oct 30 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 06:03 EST 2023. Contains 359915 sequences. (Running on oeis4.)