|
|
A263950
|
|
Array read by antidiagonals: T(n,k) is the number of lattices L in Z^k such that the quotient group Z^k / L is C_n.
|
|
16
|
|
|
1, 1, 1, 1, 3, 1, 1, 4, 7, 1, 1, 6, 13, 15, 1, 1, 6, 28, 40, 31, 1, 1, 12, 31, 120, 121, 63, 1, 1, 8, 91, 156, 496, 364, 127, 1, 1, 12, 57, 600, 781, 2016, 1093, 255, 1, 1, 12, 112, 400, 3751, 3906, 8128, 3280, 511, 1, 1, 18, 117, 960, 2801, 22932, 19531, 32640
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
All the enumerated lattices have full rank k, since the quotient group is finite.
For m>=1, T(n,k) is the number of lattices L in Z^k such that the quotient group Z^k / L is C_nm x (C_m)^(k-1); and also, (C_nm)^(k-1) x C_m.
Also, number of subgroups of (C_n)^k isomorphic to C_n (and also, to (C_n)^{k-1}), cf. [Butler, Lemma 1.4.1].
T(n,k) is the sum of the divisors d of n^(k-1) such that n^(k-1)/d is k-free. Namely, the coefficient in n^(-(k-1)*s) of the Dirichlet series zeta(s) * zeta(s-1) / zeta(ks).
Also, number of isomorphism classes of connected (C_n)-fold coverings of a connected graph with circuit rank k.
Columns are multiplicative functions.
|
|
REFERENCES
|
Lynne M. Butler, Subgroup lattices and symmetric functions. Mem. Amer. Math. Soc., Vol. 112, No. 539, 1994.
|
|
LINKS
|
Álvar Ibeas, First 100 antidiagonals, flattened
Jin Ho Kwak, Jang-Ho Chun, and Jaeun Lee, Enumeration of regular graph coverings having finite abelian covering transformation groups, SIAM J. Discrete Math. 11(2), 1998, pp. 273-285. [Page 277]
Jin Ho Kwak and Jaeun Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. [Examples 2 and 3]
|
|
FORMULA
|
T(n,k) = J_k(n) / J_1(n) = (Sum_{d|n} mu(n/d) * d^k) / phi(n).
T(n,k) = n^(k-1) * Product_{p|n, p prime} (p^k - 1) / ((p - 1) * p^(k-1)).
Dirichlet g.f. of k-th column: zeta(s-k+1) * Product_{p prime} (1 + p^(-s) + p^(1-s) + ... + p^(k-2-s)).
If n is squarefree, T(n,k) = A160870(n,k) = A000203(n^(k-1)).
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{i=1..n} T(i, k) ~ c * n^k, where c = (1/k) * Product_{p prime} (1 + (p^(k-1)-1)/((p-1)*p^k)).
Sum_{i>=1} 1/T(i, k) = zeta(k-1)*zeta(k) * Product_{p prime} (1 - 2/p^k + 1/p^(2*k-1)), for k > 2. (End)
|
|
EXAMPLE
|
There are 7 = A160870(4,2) lattices of volume 4 in Z^2. Among them, only one (<(2,0), (0,2)>) gives the quotient group C_2 x C_2, whereas the rest give C_4. Hence, T(4,2) = 6 and T(1,2) = 1.
Array begins:
k=1 k=2 k=3 k=4 k=5 k=6
n=1 1 1 1 1 1 1
n=2 1 3 7 15 31 63
n=3 1 4 13 40 121 364
n=4 1 6 28 120 496 2016
n=5 1 6 31 156 781 3906
n=6 1 12 91 600 3751 22932
|
|
MATHEMATICA
|
f[p_, e_, k_] := p^((k - 1)*(e - 1))*(p^k - 1)/(p - 1); T[n_, 1] = T[1, k_] = 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[n - k + 1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 08 2022 *)
|
|
CROSSREFS
|
Rows (1-11): A000012, A000225, A003462, A006516, A003463, A160869, A023000, A016152, A016142(n-1), A046915(n-1), A016123(n-1).
Columns (1-17): A000012, A001615, A160889, A160891, A160893, A160895, A160897, A160908, A160953, A160957, A160960, A160972, A161010, A161025, A161139, A161167, A161213.
Main diagonal gives A344210.
Cf. A000203, A160870.
Sequence in context: A058879 A208344 A209172 * A160870 A345279 A342447
Adjacent sequences: A263947 A263948 A263949 * A263951 A263952 A263953
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Álvar Ibeas, Oct 30 2015
|
|
STATUS
|
approved
|
|
|
|