%I #30 Jan 24 2019 14:24:21
%S 1,1,1,1,2,3,1,4,7,12,1,7,17,35,60,1,12,44,93,210,360,1,20,103,275,
%T 651,1470,2520,1,33,234,877,2047,5208,11760,20160,1,54,533,2544,7173,
%U 18423,46872,105840,181440,1,88,1196,7135,27085,67545,184230,468720,1058400,1814400
%N Triangle read by rows: T(n,k) (n>=1, 0<=k<n) is the number of permutations of n with maximal difference k between elements in the same cycle.
%C Row sums give A000142, n >= 1.
%C Main diagonal gives A001710. - _Alois P. Heinz_, Sep 20 2016
%H Alois P. Heinz, <a href="/A263757/b263757.txt">Rows n = 1..15, flattened</a>
%H FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000209">Maximum difference of elements in cycles</a>.
%F T(n,k) = A276837(n,k+1) - A276837(n,k). - _Alois P. Heinz_, Sep 20 2016
%e Triangle begins:
%e 1;
%e 1, 1;
%e 1, 2, 3;
%e 1, 4, 7, 12;
%e 1, 7, 17, 35, 60;
%e 1, 12, 44, 93, 210, 360;
%e ...
%Y Cf. A000071, A000142, A001710, A276727, A276837, A276974, A277031.
%K nonn,tabl
%O 1,5
%A _Christian Stump_, Oct 25 2015
%E More terms (rows n=7-10) from _Alois P. Heinz_, Sep 20 2016