login
A263754
Triangle read by rows: T(n,k) (n>=0, 1<=k<=n!) is the number of permutations pi of n such that there are k permutations <= pi in the left weak order.
2
1, 1, 1, 1, 1, 2, 2, 0, 0, 1, 1, 3, 4, 3, 2, 3, 0, 4, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 4, 6, 7, 6, 9, 4, 10, 4, 8, 2, 8, 0, 4, 8, 2, 0, 4, 0, 9, 0, 0, 0, 2, 4, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,6
COMMENTS
Row sums give A000142.
FORMULA
Sum_{k=1..n!} k * T(n,k) = A007767(n). - Alois P. Heinz, Jun 06 2016
EXAMPLE
Triangle begins:
1;
1;
1,1;
1,2,2,0,0,1;
1,3,4,3,2,3,0,4,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1;
...
CROSSREFS
Sequence in context: A318753 A318757 A263834 * A328800 A328802 A355245
KEYWORD
nonn,tabf
AUTHOR
Christian Stump, Oct 19 2015
EXTENSIONS
Row n=0 prepended by Alois P. Heinz, Jun 06 2016
STATUS
approved