This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263728 Primitive Pythagorean triples (a, b, c) in lexicographic order, with a < b < c. 2
 3, 4, 5, 5, 12, 13, 7, 24, 25, 8, 15, 17, 9, 40, 41, 11, 60, 61, 12, 35, 37, 13, 84, 85, 15, 112, 113, 16, 63, 65, 17, 144, 145, 19, 180, 181, 20, 21, 29, 20, 99, 101, 21, 220, 221, 23, 264, 265, 24, 143, 145, 25, 312, 313, 27, 364, 365, 28, 45, 53 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(3*k+1)*a(3*k+2) / (a(3*k+1)+a(3*k+2)+a(3*k+3)) is always an integer for k >= 0. Also note that a(3*k+1)*a(3*k+2)/2 is never a perfect square. - Altug Alkan, Apr 08 2016 REFERENCES H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, Chapter 5, Section 5.3. LINKS Colin Barker, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Pythagorean Triple Wikipedia, Pythagorean triple EXAMPLE The first few triples are [3, 4, 5], [5, 12, 13], [7, 24, 25], [8, 15, 17], [9, 40, 41], [11, 60, 61], [12, 35, 37], [13, 84, 85], [15, 112, 113], [16, 63, 65], [17, 144, 145], [19, 180, 181], [20, 21, 29], [20, 99, 101], ... - N. J. A. Sloane, Dec 15 2015 MAPLE a:=[]; b:={}; M:=30; for u from 2 to M do for v from 1 to u-1 do    if gcd(u, v)=1 and u+v mod 2 = 1 then t1:=u^2-v^2; t2:= 2*u*v; t3:=u^2+v^2;    w:=sort([t1, t2]); a:=[op(a), [op(w), t3]]; b:={ op(b), op(w), t3};    fi: od: od: a; sort(a); # A263728 sort(b); # A016825 and A042965 (Maple code from N. J. A. Sloane, Dec 15 2015) PROG (PARI) \\ Primitive Pythagorean triples (a, b, c) with a

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 16 15:40 EST 2018. Contains 317274 sequences. (Running on oeis4.)