login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263663 Number of length n arrays of permutations of 0..n-1 with each element moved by -5 to 5 places and with no two consecutive increases or two consecutive decreases. 1
1, 2, 4, 10, 32, 122, 422, 1222, 3302, 9021, 24558, 69453, 198750, 569814, 1618526, 4609110, 13012670, 36977018, 104466558, 297190402, 840584030, 2392121298, 6764980670, 19248138770, 54423938014, 154841629474, 437824909566 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Column 5 of A263666.

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 5*a(n-2) +14*a(n-4) +58*a(n-6) +216*a(n-8) +36*a(n-10) -504*a(n-12) +128*a(n-14) -448*a(n-18) +384*a(n-20) -64*a(n-22) for n>34

EXAMPLE

Some solutions for n=7

..3....2....2....3....3....0....0....0....2....5....3....5....1....3....1....2

..4....6....0....1....4....5....6....5....5....6....1....6....5....1....6....5

..1....1....5....4....1....1....3....2....1....2....5....1....2....2....0....0

..5....4....1....0....2....4....4....3....6....4....4....4....4....0....4....6

..0....0....6....5....0....2....1....1....0....0....6....0....0....6....3....3

..6....5....3....2....6....6....5....6....4....3....0....3....6....4....5....4

..2....3....4....6....5....3....2....4....3....1....2....2....3....5....2....1

CROSSREFS

Cf. A263666.

Sequence in context: A071954 A120017 A000736 * A176006 A263664 A263665

Adjacent sequences:  A263660 A263661 A263662 * A263664 A263665 A263666

KEYWORD

nonn

AUTHOR

R. H. Hardin, Oct 23 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 24 05:48 EST 2018. Contains 299597 sequences. (Running on oeis4.)