This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263649 a(n) is multiplicative with a(2^e) = (-1)^e, a(3^e) = -2*(-1)^e if e>0, a(p^e) = e+1 if p == 1, 7 (mod 24), a(p^e) = (e+1) * (-1)^e if p == 5, 11 (mod 24), a(p^e) = (1 + (-1)^e) / 2 if p == 13, 17, 19, 23 (mod 24). 1
 1, -1, 2, 1, -2, -2, 2, -1, -2, 2, -2, 2, 0, -2, -4, 1, 0, 2, 0, -2, 4, 2, 0, -2, 3, 0, 2, 2, -2, 4, 2, -1, -4, 0, -4, -2, 0, 0, 0, 2, 0, -4, 0, -2, 4, 0, 0, 2, 3, -3, 0, 0, -2, -2, 4, -2, 0, 2, -2, -4, 0, -2, -4, 1, 0, 4, 0, 0, 0, 4, 0, 2, 2, 0, 6, 0, -4, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA a(2*n) = - a(n). a(3*n) = 2 * A115660(n). a(3*n + 1) = A263571(n+1). a(3*n + 2) = - A263548(n). a(6*n + 1) = A261115(n). a(6*n + 3) = 2 * A128580(n). a(6*n + 5) = -2 * A128582(n). EXAMPLE G.f. = x - x^2 + 2*x^3 + x^4 - 2*x^5 - 2*x^6 + 2*x^7 - x^8 - 2*x^9 + ... MATHEMATICA a[ n_] := If[ n < 1, 0, Times @@ (Which[ # < 4, {-1, 1, -2}[[#]] (-1)^#2, Mod[#, 24] < 12, (#2 + 1) KroneckerSymbol[ #, 12]^#2, True, 1 - Mod[#2, 2]]& @@@ FactorInteger[n])]; PROG (PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, (-1)^e, p==3, -2 * (-1)^e, p%24>12, 1-e%2, (e+1) * kronecker(p, 12)^e )))}; CROSSREFS Cf. A115660, A128580, A128582, A261115, A263548, A263571. Sequence in context: A083952 A245225 A214860 * A229904 A160242 A043529 Adjacent sequences:  A263646 A263647 A263648 * A263650 A263651 A263652 KEYWORD sign,mult AUTHOR Michael Somos, Oct 22 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 25 22:44 EDT 2019. Contains 322463 sequences. (Running on oeis4.)