login
A263559
a(n) = A083186(n) mod A007504(n).
0
1, 3, 9, 2, 11, 26, 51, 3, 17, 39, 73, 119, 175, 237, 307, 8, 49, 88, 151, 220, 295, 380, 479, 584, 705, 848, 999, 1158, 1321, 1486, 1687, 51, 139, 241, 355, 477, 611, 763, 919, 1085, 1253, 1435, 1633, 1839, 2055, 2277, 2519, 2813, 3111, 3413, 3719, 4023, 4341, 4683, 5019
OFFSET
1,2
COMMENTS
Sequence is interesting because of its graph. a(n)-a(n-1) < 0 at some points such as n=4 and n=8, although usually a(n)-a(n-1) > 0.
EXAMPLE
a(1) = 1 because prime(prime(1)) mod prime(1) = 3 mod 2 = 1.
MATHEMATICA
Table[Mod[Sum[Prime@ Prime@ k, {k, n}], Sum[Prime@ k, {k, n}]], {n, 55}] (* Michael De Vlieger, Oct 21 2015 *)
PROG
(PARI) vector(100, n, sum(k=1, n, prime(prime(k))) % sum(k=1, n, prime(k)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Oct 21 2015
STATUS
approved