login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263535 a(1) = 1; thereafter a(n) = a(n-1) + d_1^1 + d_2^2 + d_3^3 + ..., where d_1 d_2 d_3 ... is the decimal expansion of a(n-1). 1
1, 2, 4, 8, 16, 53, 67, 122, 135, 270, 321, 329, 1065, 1907, 4390, 5132, 5181, 5700, 5754, 6189, 13269, 73632, 73977, 93930, 94758, 128519, 661103, 661876, 729478, 1009425, 1095200, 1096587, 2187425, 2269554, 2311471, 2430158, 4542981, 4864284, 5143384, 5422306 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This additive sequence will tend to be geometric.

LINKS

Pieter Post, Table of n, a(n) for n = 1..100

EXAMPLE

a(5)=16, so a(6) is 16 + 1^1 + 6^2 = 53.

PROG

(Python)

def moda(n, m):

....kk, kl = 0, len(str(n))

....while n > 0:

........na=int(n%m)

........kk= kk+na**kl

........n =int(n//m)

........kl=kl-1

....return kk

for c in range (1, 100):

....b=moda(b, 10)+b

....print (b)

(Sage) A=[1]

for i in [1..2000]:

    A.append(A[i-1]+sum(A[i-1].digits()[len(A[i-1].digits())-1-j]^(j+1) for j in [0..len(A[i-1].digits())-1]))

A # Tom Edgar, Oct 20 2015

(PARI) lista(nn) = {print1(a=1, ", "); for (n=2, nn, d = digits(a); na = a + sum(i=1, #d, d[i]^i); print1(na, ", "); a = na; ); } \\ Michel Marcus, Nov 20 2015

CROSSREFS

Cf. A007629, A005188.

Sequence in context: A264635 A046237 A013084 * A018681 A018735 A041013

Adjacent sequences:  A263532 A263533 A263534 * A263536 A263537 A263538

KEYWORD

nonn,base

AUTHOR

Pieter Post, Oct 20 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 14:53 EST 2020. Contains 331049 sequences. (Running on oeis4.)