login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263502 Expansion of phi(q) * f(-q^2)^3 / f(-q^6) in powers of q where phi(), f() are Ramanujan theta functions. 1
1, 2, -3, -6, 2, 0, 0, 12, -3, -4, 12, -6, -6, 0, -6, 0, 2, -6, -12, 12, 0, 0, 24, -12, 0, 14, -6, -6, 12, 0, -24, 12, -3, 0, 12, -12, -4, 0, -12, -24, 12, -6, 0, 36, -6, 0, 24, -12, -6, 14, -15, 0, 0, 0, 0, 24, -6, -24, 36, -6, 0, 0, -18, -24, 2, -12, -24, 36 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of eta(q^2)^8 / (eta(q)^2 * eta(q^4)^2 * eta(q^6)) in powers of q.

Euler transform of period 12 sequence [ 2, -6, 2, -4, 2, -5, 2, -4, 2, -6, 2, -3, ...].

G.f. is a period 1 Fourier series which satisfies f(-1/(36*t)) = 17496^(1/2) (t/i)^(3/2) g(t) where q = exp(2*Pi*i*t) and g() is the g.f. for A261444.

a(n) = A263456(4*n). a(8*n + 5) = a(9*n + 6) = 0.

a(3*n + 2) = -3 * A261444(n).

EXAMPLE

G.f. = 1 + 2*x - 3*x^2 - 6*x^3 + 2*x^4 + 12*x^7 - 3*x^8 - 4*x^9 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] QPochhammer[ q^2]^3 / QPochhammer[ q^6], {q, 0, n}];

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^6 + A)), n))};

CROSSREFS

Cf. A261444, A263456.

Sequence in context: A084459 A093095 A260611 * A002171 A138515 A107410

Adjacent sequences:  A263499 A263500 A263501 * A263503 A263504 A263505

KEYWORD

sign

AUTHOR

Michael Somos, Oct 19 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 18 20:25 EST 2019. Contains 320262 sequences. (Running on oeis4.)