login
A263493
Decimal expansion of the generalized hypergeometric function 3F2(1/2, 3/2, 5/2; 2, 2;x) at x=1/4.
1
1, 1, 4, 4, 1, 5, 4, 4, 0, 5, 6, 4, 0, 2, 6, 0, 5, 5, 4, 6, 4, 9, 2, 6, 2, 8, 2, 9, 2, 8, 7, 7, 9, 6, 2, 4, 4, 6, 8, 2, 6, 3, 6, 9, 1, 0, 3, 0, 5, 7, 6, 8, 1, 4, 2, 8, 0, 9, 8, 6, 7, 8, 4, 5, 5, 1, 2, 8, 0, 3, 9, 5, 4, 8, 2, 1, 4, 1, 5, 4, 3, 4, 7, 9, 2, 7, 6, 5, 6, 8, 5, 9, 2, 8, 2, 5, 7, 7, 3, 7, 4, 4, 5, 1, 6, 7, 7, 4, 5, 3, 1, 6, 0, 2, 9, 9, 4
OFFSET
1,3
COMMENTS
Multiplication with 3*Pi^2/64 gives 0.529328... = integral_{x=0..infinity} x*I_1(x)*K_1(x)^2 dx, where I and K are Modified Bessel Functions.
EXAMPLE
1.1441544056402605546492628292877...
MATHEMATICA
RealDigits[HypergeometricPFQ[{1/2, 3/2, 5/2}, {2, 2}, 1/4], 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)
CROSSREFS
Sequence in context: A135012 A156380 A329708 * A166237 A021878 A247252
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Oct 19 2015
STATUS
approved