login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263490 Decimal expansion of the generalized hypergeometric function 3F2(1/2,1/2,1/2 ; 1,1; x) at x=1/4. 2
1, 0, 3, 5, 1, 2, 0, 6, 6, 1, 4, 2, 5, 6, 4, 8, 9, 8, 1, 0, 4, 5, 9, 5, 7, 5, 5, 1, 4, 5, 0, 8, 6, 2, 8, 4, 9, 9, 7, 4, 9, 4, 8, 7, 3, 2, 4, 4, 9, 8, 5, 9, 5, 7, 0, 6, 9, 1, 6, 1, 7, 7, 5, 7, 7, 1, 3, 6, 2, 0, 0, 0, 7, 7, 7, 0, 2, 3, 5, 5, 4, 2, 9, 4, 7, 5, 0, 2, 0, 5, 4, 0, 1, 3, 0, 3, 7, 6, 8, 9, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Multiplication with Pi^2/4 gives 2.554057.. = integral_{x=0..infinity} I_0(x) *K_0(x)^2 dx, where I and K are Modified Bessel Functions.

LINKS

Table of n, a(n) for n=1..101.

FORMULA

Square of A243308.

From Vaclav Kotesovec, Apr 10 2016: (Start)

Equals 3^(1/2) * Gamma(1/3)^6 / (2^(8/3) * Pi^4).

Equals Gamma(1/6)^3 / (3 * 2^(5/3) * Pi^(5/2)).

(End)

EXAMPLE

1.0351206614256489810459575514...

MAPLE

evalf(4*EllipticK(sqrt(2-sqrt(3))/2)^2 / Pi^2, 120); # Vaclav Kotesovec, Apr 10 2016

MATHEMATICA

RealDigits[HypergeometricPFQ[{1/2, 1/2, 1/2}, {1, 1}, 1/4], 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)

RealDigits[4*EllipticK[(2 - Sqrt[3])/4]^2 / Pi^2, 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)

CROSSREFS

Sequence in context: A305470 A141707 A329593 * A190180 A190178 A010261

Adjacent sequences:  A263487 A263488 A263489 * A263491 A263492 A263493

KEYWORD

cons,nonn

AUTHOR

R. J. Mathar, Oct 19 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 01:34 EST 2021. Contains 340195 sequences. (Running on oeis4.)