|
|
|
|
1, 1, 2, 2, 2, 2, 6, 3, 8, 2, 12, 3, 4, 1, 2, 1, 4, 3, 4, 4, 6, 4, 4, 1, 4, 1, 4, 4, 4, 1, 10, 4, 2, 6, 2, 1, 2, 2, 2, 3, 22, 2, 10, 1, 8, 10, 4, 5, 6, 2, 4, 2, 2, 1, 2, 5, 6, 2, 12, 1, 4, 1, 8, 3, 2, 3, 2, 11, 8, 2, 2, 2, 8, 3, 2, 1, 4, 2, 16, 4, 6, 3, 6, 1, 10, 1, 10, 3, 18, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Is the sequence unbounded? We know that k exists for any n but is the value of k unbounded?
|
|
LINKS
|
Zak Seidov, Table of n, a(n) for n = 1..1000
|
|
FORMULA
|
a(n) = (A084697(n+1) - A084697(n))/n.
|
|
MAPLE
|
a[1]:= 2: a[2]:= 3:b[1]:= 1: b[2]:= 1:
for n from 2 to 1000 do
if n::odd then delta:= 2*n
else delta:= n
fi:
for q from a[n] + delta by delta while not isprime(q) do od:
a[n+1]:= q:
b[n]:= (q - a[n])/n;
od:
seq(b[n], n=1..1000); # Robert Israel, Oct 26 2015
|
|
MATHEMATICA
|
a=2; Table[k=1; While[!PrimeQ[b=a+k*n], k++]; a=b; k, {n, 1000}]
|
|
PROG
|
(PARI) lista(nn) = {a = 2; for (n=1, nn, k=1; while (!isprime(na=a+k*n), k++); print1(k, ", "); a = na; ); } \\ Michel Marcus, Oct 21 2015
|
|
CROSSREFS
|
Cf. A084697.
Sequence in context: A334512 A096625 A359072 * A283677 A355192 A260983
Adjacent sequences: A263452 A263453 A263454 * A263456 A263457 A263458
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Zak Seidov, Oct 18 2015
|
|
STATUS
|
approved
|
|
|
|