login
A263357
Decimal expansion of the solution of x*(log(x)-1)/(log(x)+1) = 1.
2
4, 6, 8, 0, 4, 9, 8, 5, 7, 9, 8, 8, 2, 9, 0, 5, 6, 0, 2, 2, 7, 5, 9, 5, 0, 3, 3, 7, 8, 3, 7, 2, 6, 6, 7, 9, 1, 4, 0, 1, 0, 3, 2, 4, 7, 9, 5, 9, 0, 0, 9, 9, 7, 2, 0, 0, 4, 7, 0, 9, 0, 1, 1, 9, 4, 1, 3, 9, 4, 3, 5, 4, 0, 9, 1, 4, 1, 3, 3, 6, 9, 5, 6, 0, 4, 1, 7, 0, 4, 5, 9, 1, 5, 0, 2, 3, 1, 8, 9, 7, 9, 0, 2, 0, 1
OFFSET
1,1
COMMENTS
Related to the shared tangents of y = exp(x) and y = log(x). For more details, see A263356.
LINKS
FORMULA
Equals exp(A263356).
EXAMPLE
4.680498579882905602275950337837266791401032479590099720047090119413...
The inverse of this, used in A263356, is
0.213652452390022411936054015235995011478174365311570610900850075919...
MATHEMATICA
RealDigits[x/.FindRoot[(x (Log[x]-1))/(Log[x]+1)==1, {x, 4}, WorkingPrecision-> 120], 10, 120][[1]] (* Harvey P. Dale, Apr 23 2022 *)
PROG
(PARI) solve(x=1, 10, x*(log(x)-1)/(log(x)+1)-1)
CROSSREFS
Cf. A263356.
Sequence in context: A333742 A107648 A004786 * A195387 A326426 A272028
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, Oct 16 2015
STATUS
approved