The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263346 Expansion of Product_{k>=1} ((1 - x^(3*k))/(1 - x^k))^k. 4
 1, 1, 3, 5, 12, 21, 40, 71, 130, 221, 387, 648, 1095, 1800, 2964, 4792, 7730, 12301, 19510, 30619, 47859, 74179, 114469, 175427, 267684, 406039, 613325, 921671, 1379500, 2055313, 3050652, 4509385, 6641966, 9746452, 14254242, 20775255, 30184451, 43715711 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015 FORMULA a(n) ~ 2^(1/6) * Zeta(3)^(1/6) * exp(6^(1/3) * Zeta(3)^(1/3) * n^(2/3)) / (3^(11/12) * sqrt(Pi) * n^(2/3)). MATHEMATICA nmax=40; CoefficientList[Series[Product[((1 - x^(3*k))/(1 - x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A000726, A000219, A262876, A262877, A262878, A262879, A263345. Sequence in context: A358369 A143360 A234005 * A034763 A183921 A177143 Adjacent sequences: A263343 A263344 A263345 * A263347 A263348 A263349 KEYWORD nonn AUTHOR Vaclav Kotesovec, Oct 15 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 02:16 EST 2022. Contains 358544 sequences. (Running on oeis4.)