

A263346


Expansion of Product_{k>=1} ((1  x^(3*k))/(1  x^k))^k.


4



1, 1, 3, 5, 12, 21, 40, 71, 130, 221, 387, 648, 1095, 1800, 2964, 4792, 7730, 12301, 19510, 30619, 47859, 74179, 114469, 175427, 267684, 406039, 613325, 921671, 1379500, 2055313, 3050652, 4509385, 6641966, 9746452, 14254242, 20775255, 30184451, 43715711
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Vaclav Kotesovec, A method of finding the asymptotics of qseries based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015


FORMULA

a(n) ~ 2^(1/6) * Zeta(3)^(1/6) * exp(6^(1/3) * Zeta(3)^(1/3) * n^(2/3)) / (3^(11/12) * sqrt(Pi) * n^(2/3)).


MATHEMATICA

nmax=40; CoefficientList[Series[Product[((1  x^(3*k))/(1  x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]


CROSSREFS

Cf. A000726, A000219, A262876, A262877, A262878, A262879, A263345.
Sequence in context: A358369 A143360 A234005 * A034763 A183921 A177143
Adjacent sequences: A263343 A263344 A263345 * A263347 A263348 A263349


KEYWORD

nonn


AUTHOR

Vaclav Kotesovec, Oct 15 2015


STATUS

approved



