login
A263251
Odd bisection of A263087; number of solutions to x - d(x) = (2n+1)^2, where d(x) is the number of divisors of x (A000005).
4
2, 1, 0, 0, 2, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 2, 1, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 0, 0, 1, 2, 2, 0, 2, 1, 0, 1, 1, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 3, 2, 1, 0, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0, 1, 2, 2, 2, 2, 0, 0, 1, 0, 1, 1, 1
OFFSET
0,1
LINKS
FORMULA
a(n) = A263087(2*n + 1).
PROG
(PARI)
A060990(n) = { my(k = n + 2400, s=0); while(k > n, if(((k-numdiv(k)) == n), s++); k--; ); s}; \\ Hard limit A002183(77)=2400 good for at least up to A002182(77) = 10475665200.
A263087(n) = A060990(n^2);
A263251(n) = A263087((2*n)+1);
p = 0; for(n=0, 10000, k = A263251(n); p += k; write("b263251.txt", n, " ", k); write("b263253.txt", n, " ", p)); \\ Compute A263251 and A263253 at the same time.
(Scheme) (define (A263251 n) (A263087 (+ n n 1)))
CROSSREFS
Cf. also A263253 (partial sums).
Sequence in context: A025874 A256012 A332040 * A318370 A339742 A345164
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 07 2015
STATUS
approved