The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263228 a(n) = 2*n*(16*n - 13). 4
 0, 6, 76, 210, 408, 670, 996, 1386, 1840, 2358, 2940, 3586, 4296, 5070, 5908, 6810, 7776, 8806, 9900, 11058, 12280, 13566, 14916, 16330, 17808, 19350, 20956, 22626, 24360, 26158, 28020, 29946, 31936, 33990, 36108, 38290, 40536, 42846, 45220, 47658, 50160 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For n>=3, a(n) = the Wiener index of the Jahangir graph J_{4,n}. The Jahangir graph J_{4,n} is a connected graph consisting of a cycle graph C(4n) and one additional center vertex that is adjacent to n vertices of C(4n) at distances 4 to each other on C(4n). In the Farahani reference the expression in Theorem 2 is accidentally incorrect; it should be 2m(16m - 13). The Hosoya polynomial of J_{4,n} is 5nx + n(n+1))x^2/2 + n(2n+1)x^3 +n(3n-4)x^4 + 2n(n-2)x^5 + n(n-3)x^6/2 (see the Farahani reference, p. 234, last line; however, the expression in Theorem 1, p. 233, is accidentally incorrect). LINKS M. R. Farahani, Hosoya polynomial and of Jahangir graphs J_{4,m}, Global J. Math, 3 (1), 232-236, 2015. Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f. = 2*x*(3+29*x)/(1-x)^3. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). MAPLE seq(32*n^2 - 26*n, n=0..40); MATHEMATICA Table[2 n (16 n - 13), {n, 0, 40}] (* Bruno Berselli, Oct 15 2015 *) PROG (MAGMA) [2*n*(16*n-13): n in [0..60]]; // Vincenzo Librandi, Oct 15 2015 (PARI) vector(50, n, n--; 2*n*(16*n-13)) \\ Altug Alkan, Oct 15 2015 CROSSREFS Cf. A049598, A263226, A263227, A263229, A263231. Sequence in context: A081066 A185289 A326011 * A229571 A016090 A181343 Adjacent sequences:  A263225 A263226 A263227 * A263229 A263230 A263231 KEYWORD nonn,easy AUTHOR Emeric Deutsch, Oct 13 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 18:08 EST 2020. Contains 330987 sequences. (Running on oeis4.)