

A263228


a(n) = 2*n*(16*n  13).


4



0, 6, 76, 210, 408, 670, 996, 1386, 1840, 2358, 2940, 3586, 4296, 5070, 5908, 6810, 7776, 8806, 9900, 11058, 12280, 13566, 14916, 16330, 17808, 19350, 20956, 22626, 24360, 26158, 28020, 29946, 31936, 33990, 36108, 38290, 40536, 42846, 45220, 47658, 50160
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

For n>=3, a(n) = the Wiener index of the Jahangir graph J_{4,n}. The Jahangir graph J_{4,n} is a connected graph consisting of a cycle graph C(4n) and one additional center vertex that is adjacent to n vertices of C(4n) at distances 4 to each other on C(4n). In the Farahani reference the expression in Theorem 2 is accidentally incorrect; it should be 2m(16m  13).
The Hosoya polynomial of J_{4,n} is 5nx + n(n+1))x^2/2 + n(2n+1)x^3 +n(3n4)x^4 + 2n(n2)x^5 + n(n3)x^6/2 (see the Farahani reference, p. 234, last line; however, the expression in Theorem 1, p. 233, is accidentally incorrect).


LINKS

Table of n, a(n) for n=0..40.
M. R. Farahani, Hosoya polynomial and of Jahangir graphs J_{4,m}, Global J. Math, 3 (1), 232236, 2015.
Index entries for linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

G.f. = 2*x*(3+29*x)/(1x)^3.
a(n) = 3*a(n1)  3*a(n2) + a(n3).


MAPLE

seq(32*n^2  26*n, n=0..40);


MATHEMATICA

Table[2 n (16 n  13), {n, 0, 40}] (* Bruno Berselli, Oct 15 2015 *)


PROG

(MAGMA) [2*n*(16*n13): n in [0..60]]; // Vincenzo Librandi, Oct 15 2015
(PARI) vector(50, n, n; 2*n*(16*n13)) \\ Altug Alkan, Oct 15 2015


CROSSREFS

Cf. A049598, A263226, A263227, A263229, A263231.
Sequence in context: A081066 A185289 A326011 * A229571 A016090 A181343
Adjacent sequences: A263225 A263226 A263227 * A263229 A263230 A263231


KEYWORD

nonn,easy


AUTHOR

Emeric Deutsch, Oct 13 2015


STATUS

approved



