This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263227 a(n) = n*(67*n - 89)/2. 4
 0, -11, 45, 168, 358, 615, 939, 1330, 1788, 2313, 2905, 3564, 4290, 5083, 5943, 6870, 7864, 8925, 10053, 11248, 12510, 13839, 15235, 16698, 18228, 19825, 21489, 23220, 25018, 26883, 28815, 30814, 32880, 35013, 37213, 39480, 41814, 44215, 46683, 49218, 51820 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For n>=3, a(n) = the hyper-Wiener index of the Jahangir graph J_{3,n}. The Jahangir graph J_{3,n} is a connected graph consisting of a cycle graph C(3n) and one additional center vertex that is adjacent to n vertices of C(3n) at distances 3 to each other on C(3n). The Hosoya polynomial of J_(3,n) is 4nx + (1/2)n(n+9)x^2 + 2n(n-1)x^3 + n(2n-5)x^4. LINKS M. R. Farahani, The Wiener index and Hosoya polynomial of a class of Jahangir graphs J_{3,m}, Fundamental J. Math. and Math. Sci., 3 (1), 91-96, 2015. Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: x*(-11+78*x)/(1-x)^3. - Vincenzo Librandi, Oct 13 2015 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Oct 13 2015 MAPLE seq((1/2)*n*(67*n-89), n = 0 .. 40); MATHEMATICA Table[n (67 n - 89)/2, {n, 0, 40}] (* Vincenzo Librandi, Oct 13 2015 PROG (PARI) vector(50, n, n--; n*(67*n-89)/2) \\ Altug Alkan, Oct 12 2015 (MAGMA) [n*(67*n-89)/2: n in [0..40]]; // Bruno Berselli, Oct 15 2015 CROSSREFS Cf. A049598, A263226, A263228, A263229, A263231. Sequence in context: A232613 A057813 A051740 * A144932 A072262 A231224 Adjacent sequences:  A263224 A263225 A263226 * A263228 A263229 A263230 KEYWORD sign,easy AUTHOR Emeric Deutsch, Oct 12 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 21 06:23 EDT 2018. Contains 313934 sequences. (Running on oeis4.)