This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263192 Decimal expansion of Sum_{n >= 1} cos(n)/sqrt(n), negated. 3
 1, 9, 4, 1, 0, 8, 9, 3, 5, 0, 9, 2, 1, 8, 2, 0, 4, 9, 7, 3, 9, 1, 4, 9, 2, 4, 4, 9, 2, 8, 1, 9, 4, 7, 2, 6, 6, 3, 5, 3, 2, 0, 5, 5, 2, 6, 3, 4, 0, 4, 7, 8, 1, 5, 4, 0, 2, 3, 9, 8, 3, 7, 6, 6, 0, 9, 5, 6, 6, 6, 8, 3, 7, 2, 6, 2, 5, 5, 4, 7, 6, 4, 0, 0, 6, 5, 3, 1, 8, 9, 6, 4, 9, 6, 5, 5, 2, 4, 7, 0, 1, 2, 2, 6, 8, 3, 5, 1, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A slowly convergent series. It may be efficiently computed via the Hurwitz zeta-function (see formula below). LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Iaroslav V. Blagouchine, A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations, Journal of Number Theory (Elsevier), vol. 148, pp. 537-592 & vol. 151, pp. 276-277, 2015. arXiv version, arXiv:1401.3724 [math.NT]. FORMULA (Zeta(1/2, 1/(2*Pi)) + Zeta(1/2, 1-1/(2*Pi)))/2, see formula (26) in the reference. EXAMPLE -0.1941089350921820497391492449281947266353205526340478... MAPLE evalf(1/2*(Zeta(0, 1/2, 1/(2*Pi)) + Zeta(0, 1/2, 1-1/(2*Pi))), 120); MATHEMATICA N[(Zeta[1/2, 1/(2*Pi)] + Zeta[1/2, 1 - 1/(2*Pi)])/2, 200] RealDigits[Re[(1/2)*(PolyLog[1/2, E^(-I)] + PolyLog[1/2, E^I])], 10, 109][[1]] (* Vaclav Kotesovec, Oct 31 2015 *) PROG (PARI) zetahurwitz(1/2, 1/Pi/2)/2 + zetahurwitz(1/2, 1-1/Pi/2)/2 \\ Charles R Greathouse IV, Jan 30 2018 CROSSREFS Cf. A113024, A121225, A263193. Sequence in context: A021918 A112146 A056897 * A270309 A010158 A286229 Adjacent sequences:  A263189 A263190 A263191 * A263193 A263194 A263195 KEYWORD nonn,cons AUTHOR Iaroslav V. Blagouchine, Oct 11 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 14:31 EDT 2019. Contains 328019 sequences. (Running on oeis4.)