

A263158


a(n) = Sum_{k=1..n} stirling2(n,k)*(k!)^3).


1



1, 9, 241, 15177, 1871761, 400086249, 136109095921, 69234116652297, 50204612238691921, 49984961118827342889, 66285608345755685396401, 114183585213704219683871817, 250186610841184605935378238481, 684906688327788169186039802989929, 2306818395080969813211747978667981681
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..15.


FORMULA

Representation as a sum of infinite series of special values of Meijer G functions, a(n) = Sum_{k>=0} MeijerG([[1],[]],[[1+k,1+k,1+k],[]],1)) k^n/k!. The Meijer G functions in the above formula cannot be represented through any other special function.
a(n) ~ n!^3.  Vaclav Kotesovec, Jul 12 2018


MAPLE

# This program is intended for quick evaluation of a(n)
with(combinat):
a:= n> add(stirling2(n, k)*((k)!)^3, k=1..n):
seq(a(n), n=1..15);
# Maple program for the evaluation and verification of the infinite series representation:
a:= n> evalf(sum(k^n*evalf(MeijerG([[1], []], [[1+k, 1+k, 1+k], []], 1))/k!, k=0..infinity)); # n=1, 2, ... .
# This infinite series is slowly converging and the use of the above formula will presumably not give the result in a reasonable time. Instead it is practical to replace the upper summation limit k = infinity by some kmax, say kmax = 5000. For example, this yields for a(3) = 241 the approximation 240.99999999948 in about 90 sec. Increasing kmax improves this approximation.


MATHEMATICA

Table[Sum[StirlingS2[n, k] ((k)!)^3, {k, n}], {n, 15}]


CROSSREFS

Cf. A261833, A262960, A263026.
Cf. A000670, A064618, A316746.
Sequence in context: A085799 A278858 A274789 * A183903 A251670 A075127
Adjacent sequences: A263155 A263156 A263157 * A263159 A263160 A263161


KEYWORD

nonn


AUTHOR

Karol A. Penson and Katarzyna Gorska, Oct 11 2015


STATUS

approved



