The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263134 a(n) = Sum_{k=0..n} binomial(3*k+1,k). 4
 1, 5, 26, 146, 861, 5229, 32361, 202905, 1284480, 8191380, 52543545, 338641305, 2191124301, 14224347181, 92603307541, 604342068085, 3952451061076, 25898039418496, 169977746765071, 1117287239602471, 7353933943361866, 48461930821297546 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Primes in sequence: 5, 92603307541, 52176309488123582020412161, ... a(n) is divisible by n for n = 1, 2, 8, 55, 82, 171, 210, 1060, 1141, ... LINKS Bruno Berselli and G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..100 form Bruno Berselli) FORMULA Recurrence: 2*n*(2*n + 1)*a(n) = (31*n^2 + 2*n - 3)*a(n-1) - 3*(3*n - 1)*(3*n + 1)*a(n-2). - Vaclav Kotesovec, Oct 11 2015 a(n) ~ 27^(n + 3/2)/(23*sqrt(Pi*n)*4^(n + 1)). - Vaclav Kotesovec, Oct 11 2015 MATHEMATICA Table[Sum[Binomial[3 k + 1, k], {k, 0, n}], {n, 0, 25}] PROG (Sage) [sum(binomial(3*k+1, k) for k in (0..n)) for n in (0..25)] (MAGMA) [&+[Binomial(3*k+1, k): k in [0..n]]: n in [0..25]]; (Maxima) makelist(sum(binomial(3*k+1, k), k, 0, n), n, 0, 25); (PARI) a(n) = sum(k=0, n, binomial(3*k+1, k)) \\ Colin Barker, Oct 16 2015 CROSSREFS Partial sums of A045721. Cf. A079309: Sum_{k=0..n} binomial(2*k+1,k). Cf. A188675: Sum_{k=0..n} binomial(3*k,k). Cf. A087413: Sum_{k=0..n} binomial(3*k+2,k). Sequence in context: A053487 A277957 A183161 * A082029 A081047 A001705 Adjacent sequences:  A263131 A263132 A263133 * A263135 A263136 A263137 KEYWORD nonn,easy AUTHOR Bruno Berselli, Oct 10 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 05:41 EST 2021. Contains 340455 sequences. (Running on oeis4.)