login
A262945
Number of ordered pairs (x,y) with x >= 0 and y >= 0 such that n - x^4 - 2*y^2 is a triangular number or a pentagonal number.
14
1, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 4, 5, 2, 5, 4, 5, 7, 3, 1, 1, 4, 4, 6, 4, 1, 4, 4, 3, 5, 6, 5, 6, 4, 1, 1, 2, 5, 4, 5, 3, 3, 2, 1, 5, 4, 7, 9, 5, 4, 2, 2, 2, 5, 3, 2, 5, 2, 1, 3, 4, 3, 8, 4, 4, 5, 6, 3, 3, 3, 2, 7, 6, 1, 3, 3, 4, 7, 4, 6, 6, 7, 5, 2, 3, 3
OFFSET
0,2
COMMENTS
Conjecture: a(n) > 0 for every n = 0,1,2,..., and a(n) = 1 only for the following 55 values of n: 0, 26, 27, 32, 41, 42, 50, 65, 80, 97, 112, 122, 130, 160, 196, 227, 239, 272, 322, 371, 612, 647, 736, 967, 995, 1007, 1106, 1127, 1205, 1237, 1240, 1262, 1637, 1657, 1757, 2912, 2987, 3062, 3107, 3524, 3647, 3902, 5387, 5587, 5657, 6047, 6107, 11462, 13427, 14717, 15002, 17132, 20462, 30082, 35750.
See also A262941, A262944, A262954 and A262955 for similar conjectures.
LINKS
Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), no. 7, 1367-1396.
EXAMPLE
a(26) = 1 since 26 = 2^4 + 2*0^2 + 4*5/2.
a(32) = 1 since 32 = 0^4 + 2*4^2 + 0*1/2.
a(41) = 1 since 41 = 1^4 + 2*3^2 + p_5(4), where p_5(n) denotes the pentagonal number n*(3*n-1)/2.
a(196) = 1 since 196 = 1^4 + 2*5^2 + p_5(10).
a(3524) = 1 since 3524 = 0^4 + 2*22^2 + 71*72/2.
a(3647) = 1 since 3647 = 0^4 + 2*34^2 + p_5(30).
a(6047) = 1 since 6047 = 5^4 + 2*39^2 + p_5(40).
a(6107) = 1 since 6107 = 0^4 + 2*1^2 + 110*111/2.
a(11462) = 1 since 11462 = 9^4 + 2*5^2 + 98*99/2.
a(13427) = 1 since 13427 = 7^4 + 2*0^2 + 148*149/2.
a(14717) = 1 since 14717 = 8^4 + 2*72^2 + 22*23/2.
a(15002) = 1 since 15002 = 0^4 + 2*86^2 + 20*21/2.
a(17132) = 1 since 17132 = 3^4 + 2*30^2 + p_5(101).
a(20462) = 1 since 20462 = 0^4 + 2*26^2 + 195*196/2.
a(30082) = 1 since 30082 = 11^4 + 2*63^2 + 122*123/2.
a(35750) = 1 since 35750 = 0^4 + 2*44^2 + 252*253/2.
MATHEMATICA
SQ[n_]:=IntegerQ[Sqrt[8n+1]]||(IntegerQ[Sqrt[24n+1]]&&Mod[Sqrt[24n+1]+1, 6]==0)
Do[r=0; Do[If[SQ[n-x^4-2y^2], r=r+1], {x, 0, n^(1/4)}, {y, 0, Sqrt[(n-x^4)/2]}]; Print[n, " ", r]; Continue, {n, 0, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 05 2015
STATUS
approved