This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A262898 Square array A(row,col) read by antidiagonals: A(1,col) = A045765(col); for row > 1, if A(row-1,col) = 0 then A(row,col) = 0, otherwise A(row,col) = A049820(A(row-1,col)). 7
 7, 8, 5, 13, 4, 3, 19, 11, 1, 1, 20, 17, 9, 0, 0, 24, 14, 15, 6, 0, 0, 25, 16, 10, 11, 2, 0, 0, 28, 22, 11, 6, 9, 0, 0, 0, 33, 22, 18, 9, 2, 6, 0, 0, 0, 36, 29, 18, 12, 6, 0, 2, 0, 0, 0, 37, 27, 27, 12, 6, 2, 0, 0, 0, 0, 0, 40, 35, 23, 23, 6, 2, 0, 0, 0, 0, 0, 0, 43, 32, 31, 21, 21, 2, 0, 0, 0, 0, 0, 0, 0, 49, 41, 26, 29, 17, 17, 0, 0, 0, 0, 0, 0, 0, 0, 50, 46, 39, 22, 27, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The array is read by downwards antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc. Column n gives the trajectory of iterates of A049820, when starting from A045765(n), thus stepping through successive parent-nodes when starting from the n-th leaf in the tree generated by edge-relation A049820(child) = parent, until finally reaching the fixed point 0, which is the root of the whole tree. A portion of the hanging tail of each column (upward from the first encountered zero) converges towards A259934, although not in monotone fashion. LINKS FORMULA A(1,col) = A045765(col), and for row > 1, if A(row-1,col) = 0 then A(row,col) = 0, otherwise A(row,col) = A049820(A(row-1,col)). EXAMPLE The top left corner of the array: 7, 8, 13, 19, 20, 24, 25, 28, 33, 36, 37, 40, 43, 49, 50, 52, 55, 56 5, 4, 11, 17, 14, 16, 22, 22, 29, 27, 35, 32, 41, 46, 44, 46, 51, 48 3, 1,  9, 15, 10, 11, 18, 18, 27, 23, 31, 26, 39, 42, 38, 42, 47, 38 1, 0,  6, 11,  6,  9, 12, 12, 23, 21, 29, 22, 35, 34, 34, 34, 45, 34 0, 0,  2,  9,  2,  6,  6,  6, 21, 17, 27, 18, 31, 30, 30, 30, 39, 30 0, 0,  0,  6,  0,  2,  2,  2, 17, 15, 23, 12, 29, 22, 22, 22, 35, 22 0, 0,  0,  2,  0,  0,  0,  0, 15, 11, 21,  6, 27, 18, 18, 18, 31, 18 0, 0,  0,  0,  0,  0,  0,  0, 11,  9, 17,  2, 23, 12, 12, 12, 29, 12 0, 0,  0,  0,  0,  0,  0,  0,  9,  6, 15,  0, 21,  6,  6,  6, 27,  6 0, 0,  0,  0,  0,  0,  0,  0,  6,  2, 11,  0, 17,  2,  2,  2, 23,  2 0, 0,  0,  0,  0,  0,  0,  0,  2,  0,  9,  0, 15,  0,  0,  0, 21,  0 0, 0,  0,  0,  0,  0,  0,  0,  0,  0,  6,  0, 11,  0,  0,  0, 17,  0 0, 0,  0,  0,  0,  0,  0,  0,  0,  0,  2,  0,  9,  0,  0,  0, 15,  0 0, 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  6,  0,  0,  0, 11,  0 0, 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  2,  0,  0,  0,  9,  0 0, 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  6,  0 ... PROG (Scheme) (define (A262898 n) (A262898bi (A002260 n) (A004736 n))) (define (A262898bi row col) (if (= 1 row) (A045765 col) (if (zero? (A262898bi (- row 1) col)) 0 (A049820 (A262898bi (- row 1) col))))) CROSSREFS Transpose: A262899. Cf. A045765 (row 1), A262902 (row 2). Cf. A049820, A259934. Cf. also A257264. Sequence in context: A021060 A117239 A198365 * A256045 A004496 A197762 Adjacent sequences:  A262895 A262896 A262897 * A262899 A262900 A262901 KEYWORD nonn,tabl AUTHOR Antti Karttunen, Oct 06 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 20:35 EDT 2019. Contains 328103 sequences. (Running on oeis4.)