OFFSET
0,6
COMMENTS
In general, if s>0, t>0, GCD(s,t)=1 and g.f. = Product_{k>=1} (1 + x^(s*k-t))^k then a(n) ~ 2^(t^2/(2*s^2) - 3/4) * s^(2/3) * Zeta(3)^(1/6) * exp(-Pi^4 * t^2 / (1296 * s^2 * Zeta(3)) + Pi^2 * t * 2^(1/3) * 3^(2/3) * s^(2/3) * n^(1/3) / (36 * s^2 * Zeta(3)^(1/3)) + 3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / (2^(4/3) * s^(2/3)) ) / (3^(1/3) * s * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Oct 12 2015
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
FORMULA
a(n) ~ exp(2^(-4/3) * 3^(2/3) * Zeta(3)^(1/3) * n^(2/3) + Pi^2 * n^(1/3) / (2^(5/3)*3^(8/3) * Zeta(3)^(1/3)) - Pi^4/(11664*Zeta(3))) * Zeta(3)^(1/6) / (2^(25/36) * 3^(2/3) * sqrt(Pi) * n^(2/3)).
MAPLE
with(numtheory):
b:= n-> `if`(n<3, n-1, (p-> [0, -r, 2*r, 0, 0, 2*r+1][p]
)(1+irem(n+3, 6, 'r'))):
a:= proc(n) option remember; `if`(n=0, 1, add(add(
d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..60); # Alois P. Heinz, Oct 05 2015
MATHEMATICA
nmax=100; CoefficientList[Series[Product[(1+x^(3k-1))^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax=100; CoefficientList[Series[E^Sum[(-1)^(j+1)/j*x^(2*j)/(1-x^(3j))^2, {j, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 04 2015
STATUS
approved