

A262855


Triangle read by rows giving successive states of cellular automaton generated by "Rule 153" initiated with a single ON (black) cell.


4



1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0


COMMENTS

Row n has length 2n+1.


REFERENCES

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.


LINKS

Robert Price, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
S. Wolfram, A New Kind of Science
Index entries for sequences related to cellular automata
Index to Elementary Cellular Automata


EXAMPLE

The first ten rows:
1
0 0 1
0 1 0 1 1
0 0 0 0 1 1 1
0 1 1 1 0 1 1 1 1
0 0 1 1 0 0 1 1 1 1 1
0 1 0 1 0 1 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1


MATHEMATICA

rule=153; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rowsk+1, rows+k1}], {k, 1, rows}]; (* Truncated list of each row *) Flatten[catri] (* Triangle Representation of CA *)


CROSSREFS

Sequence in context: A266441 A266672 A266070 * A204171 A267612 A242252
Adjacent sequences: A262852 A262853 A262854 * A262856 A262857 A262858


KEYWORD

nonn,tabf,easy


AUTHOR

Robert Price, Jan 17 2016


STATUS

approved



