login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262831 (5,2)-primes (defined in Comments). 2
2, 3, 5, 11, 13, 23, 31, 41, 43, 53, 61, 71, 73, 83, 101, 103, 113, 131, 151, 163, 173, 181, 191, 223, 233, 241, 251, 263, 281, 293, 311, 313, 331, 373, 383, 401, 421, 433, 443, 461, 463, 491, 521, 523, 541, 563, 593, 631, 641, 653, 673, 683, 691, 701, 733 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Let V = (b(1), b(2), ..., b(k)), where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p a V-prime if the digits of p in base b(1) spell a prime in each of the bases b(2), ..., b(k).

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

MATHEMATICA

{b1, b2} = {2, 5};

u = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &];

(* A235475 *)

v = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &];

(* A262831 *)

w = Intersection[u, v]; (* A262832 *)

(* Peter J. C. Moses, 27 Sep 2015 *)

CROSSREFS

Cf. A000040, A262729, A262832, A262833.

Sequence in context: A180640 A128425 A175565 * A036960 A133783 A036958

Adjacent sequences:  A262828 A262829 A262830 * A262832 A262833 A262834

KEYWORD

nonn,easy,base

AUTHOR

Clark Kimberling, Oct 31 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 22:37 EST 2019. Contains 329782 sequences. (Running on oeis4.)