login
A262830
{2,3}-primes (defined in Comments).
3
2, 7, 13, 67, 79, 151, 181, 193, 223, 283, 331, 421, 631, 661, 733, 877, 1201, 1321, 1657, 1669, 1759, 1789, 1993, 2383, 2521, 3061, 3391, 3463, 3733, 3877, 3967, 4093, 4153, 4243, 4507, 4987, 5791, 6121, 6151, 6211, 6343, 6661, 6733, 6961, 7129, 8089, 8191
OFFSET
1,1
COMMENTS
Let S = {b(1), b(2), ..., b(k)}, where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p an S-prime if the digits of p in base b(i) spell a prime in each of the bases b(j) in S, for i = 1..k. Equivalently, p is an S-prime if p is a strong-V prime (defined at A262729) for every permutation of the vector V = (b(1), b(2), ..., b(k)).
LINKS
MATHEMATICA
{b1, b2} = {2, 3};
u = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &]; (* A235266 *)
v = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &]; (* A262829 *)
w = Intersection[u, v]; (* A262830 *)
(* Peter J. C. Moses, Sep 27 2015 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Oct 31 2015
STATUS
approved