The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A262811 Expansion of Product_{k>=1} 1/(1-x^(2*k-1))^(2*k-1). 18
 1, 1, 1, 4, 4, 9, 15, 22, 37, 56, 92, 133, 210, 310, 466, 696, 1013, 1495, 2160, 3141, 4495, 6462, 9172, 13024, 18387, 25840, 36213, 50500, 70280, 97302, 134522, 185105, 254245, 347938, 475036, 646676, 878145, 1189468, 1607095, 2166672, 2913794, 3910741 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015 FORMULA a(n) ~ exp(-1/12 + 3*Zeta(3)^(1/3)*n^(2/3)/2) * A * Zeta(3)^(5/36) / (2^(2/3) * sqrt(3*Pi) * n^(23/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A050999(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 09 2017 MAPLE with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*       `if`(d::even, 0, d), d=divisors(j))*a(n-j), j=1..n)/n)     end: seq(a(n), n=0..45);  # Alois P. Heinz, Oct 05 2015 MATHEMATICA nmax = 60; CoefficientList[Series[Product[1/(1-x^(2*k-1))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A000219, A003293, A035528, A161870, A262736, A292038. Sequence in context: A165996 A266008 A284628 * A294749 A098359 A319435 Adjacent sequences:  A262808 A262809 A262810 * A262812 A262813 A262814 KEYWORD nonn AUTHOR Vaclav Kotesovec, Oct 03 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 08:19 EST 2020. Contains 338761 sequences. (Running on oeis4.)