login
A Beatty sequence: a(n)=floor(q*n) where q=A231187.
1

%I #23 Dec 15 2023 15:10:00

%S 0,2,4,6,8,11,13,15,17,20,22,24,26,29,31,33,35,38,40,42,44,47,49,51,

%T 53,56,58,60,62,65,67,69,71,74,76,78,80,83,85,87,89,92,94,96,98,101,

%U 103,105,107,110,112,114,116,119,121,123,125,128,130,132,134,137,139

%N A Beatty sequence: a(n)=floor(q*n) where q=A231187.

%C Beatty sequence of the longer diagonal (A231187) in a regular heptagon with sidelength 1.

%C Complement of Beatty sequence A262770 of the longer diagonal (A160389) in a regular heptagon with sidelength 1.

%H Peter Steinbach, <a href="http://www.jstor.org/stable/2691048">Golden Fields: A Case for the Heptagon</a>, Mathematics Magazine, Vol. 70, No. 1, Feb. 1997

%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>

%t Table[Floor[n/(2 Cos[3 Pi/7])], {n, 0, 106}] (* _Michael De Vlieger_, Oct 05 2015 *)

%o (Octave) q=roots([1,-2,-1,1])(1); a(n)=floor(q*n)

%o (PARI) a(n) = floor(n/(2*cos(3*Pi/7))) \\ _Michel Marcus_, Oct 05 2015

%Y Complement of A262770.

%K nonn

%O 0,2

%A _Patrick D McLean_, Sep 30 2015