login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262710 Powers of -4. 1
1, -4, 16, -64, 256, -1024, 4096, -16384, 65536, -262144, 1048576, -4194304, 16777216, -67108864, 268435456, -1073741824, 4294967296, -17179869184, 68719476736, -274877906944, 1099511627776, -4398046511104, 17592186044416, -70368744177664, 281474976710656 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Purely real values from the sequence generated by (1 + i)^k where i = sqrt(-1) and k is a real nonnegative integer.

This sequence gives the values of (1 + i)^k when k is a multiple of 4. When k = 2 mod 4, (1 + i)^k is purely imaginary, and when k is odd, (1 + i)^k has both a real and an imaginary part, and abs(Re((1 + i)^k)) = abs(Im((1 + i)^k)).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (-4).

FORMULA

a(n) = (-4)^n.

G.f.: 1/(1 + 4 * x).

MATHEMATICA

(-4)^Range[0, 15] (* Alonso del Arte, Mar 16 2016 *)

PROG

(PARI) vector(100, n, n--; (-4)^n) \\ Altug Alkan, Oct 05 2015

(PARI) Vec(1/(1+4*x) + O(x^30)) \\ Michel Marcus, Oct 06 2015

(PARI) lista(nn) = for (n=0, nn, z = (1+I)^n; if (imag(z)==0, print1(real(z), ", "))); \\ Michel Marcus, Nov 01 2015

(MAGMA) [(-1)^n*4^n: n in [0..30]]; // Vincenzo Librandi, Oct 06 2015

CROSSREFS

Cf. A000302, A016825, A005408, A122803.

Sequence in context: A294452 A270142 A000302 * A050734 A075614 A083592

Adjacent sequences:  A262707 A262708 A262709 * A262711 A262712 A262713

KEYWORD

sign,easy

AUTHOR

L. Van Warren, Sep 28 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 12:48 EST 2018. Contains 299333 sequences. (Running on oeis4.)